Homework 2
CS 181, Fall 2024

Out: Sep. 28
Due: Oct. 7, 11:59 PM

Please upload your solutions on Gradescope. You can use IATEX or a word document to write up your
answers, but we prefer you use KITgX. You may scan hand-written work or images for parts of solutions
only if they are extremely clean and legible. Please ensure that your name does not appear anywhere in
your handin.

Problem 1: Free End Gap Alignment

In class you will soon be learning about motifs. Wikipedia defines a motif as “a nucleotide or amino-acid
sequence pattern that is widespread and has, or is conjectured to have, biological significance”. Combi-
natorial pattern matching algorithms are often used to find motifs, but in this homework we’ll see how
alignment algorithms can be used for the same task.

Let’s design an alignment algorithm to find motifs for us. Global alignment won’t work for the motif
problem because it will align our short motif to a large region of the longer string with many gaps. Since
we expect our motif to match on a small area, we might guess that local alignment is appropriate. But
local alignment will also have trouble because we want to align the entirety of our motif, and local align-
ment may pick out a subsequence of the motif. To sidestep these problems, we introduce a new kind of
alignment: Free End Gap Alignment. We want to align the entire motif to a subsequence of the longer
sequence, with as few gaps in the aligned section as possible. To this end, we will discount any gaps that
occur on the ends of a sequence. For example, the optimal global alignment of GTAGGCTTAAGGTTA and
TAGATA is

GTAGGCTTAAGGTTA
-TAG----A---T-A

with a score of —3 (assuming our usual scoring scheme of +1 for match, -1 for gap and mismatch). An
optimal Free End Gap Alignment, however, would be

GTAGGCTTAAGGTTA
~TAGA--TA-————-—

with a higher score of 2. Indeed, this latter alignment better captures the essence of what it means to find
a motif in a longer sequence. We formalize the Free End Gap Alignment problem as follows:

FREE END GAP ALIGNMENT

Input: Strings u, v, and a scoring function § that takes in two characters
as arguments.

Output: An alignment of u, v, for which the score is maximal (as defined
by ¢) and for which end gaps are free (i.e. not penalized) in the shorter
sequence.

a. Design a dynamic programming solution to the Free End Gap Alignment problem. Your solution must
include

* anew recurrence relation, if necessary
* adescription of how your table is initialized
* how to backtrack through your table, including where to start and where to end
If you wish, you may also include diagrams, pseudocode, mathematical expressions, and plain English

text in your answer. However, please do not submit a block of code with no accompanying explanation.

Now to see the algorithm at work. We’ve implemented Free End Gap Alignment for you already.
Enter your CS181 Projects directory and run git pull. This will create the hw2 directory contain-
ing the FEGA scripts: FEGAlignment .sh and fegalignment .pyc. The pyc file is a compiled
python file that has been compiled within the course Docker container.

The implementation takes in two arguments, a long sequence and a short sequence to align it against
(the scoring scheme is the standard scheme mentioned prior). The code will then output all optimal
alignments. Here’s an example of how to run our implementation:

> sh FEGAlignment.sh GTAGGCTTAAGGTTA TAGATA
GTAGGCTTAAGGTTA
-TAGA-T-A-——-—-
GTAGGCTTAAGGTTA
——————— TA-GAT-A

b. Use our implementation to count the number of DNA fragments that are created by exposing the
following sequence (all three lines make up one contiguous sequence, written 5’ to 3”) to the restriction
enzyme BamHI, which has the recognition site G/GATCC. How would your answer change if the
polarity of the following sequence was reversed? Please enter the Docker container before running
our implementation.

TCCATTGATGCCACGGCGGATCCTGGAGAGCAGCAGCGACTTGCATACATCAGATCAGAGTAATACTAGC
ATGCGATAAGTCCCTAACTGACTATGGATCCTTCTAGAGTCAACTTCAGGACATATGGTCTCTGGATCCC
GTGGATCCTTCCTAGGAATCAGATTGGATCCTGGTTAACCATCAAACAGGTCTTGAGTCTAAAATTGTCG

Problem 2: Homology

Finding conserved patterns across different species is important for evolutionary biology. Consider the
following sequences:

A: 5’ AGCTTCGAAGTTATCTTGGACGGACTTG 3’
B: 5’ AGTITTCCCAGGATATCTTCGAACGACTG 3’
C: 5’ AGGCTTCCCATCCTCCTATAAAGGTAGG 3’

We wish to find whether B or C is a homologous protein to A, that is, a protein that originates from some
ancestral species. The optimal alignment for A and B is

A: AGCTTCGAAGT-TATCTTGGA-CGGACTTG
B: AGTTTCCCAGGATATCTTCGAACG-ACT-G

with a score of 12. The optimal alignment between A and C is

A: AG-CTTCGAAGT--TATCT-TGGACGGACTTG-
C: AGGCTTCCCA-TCCTC-CTATAAA-GG--TAGG

with a score of 1. After splicing the DNA into cells, you find that the DNA actually transcribes the
following protein sequences (using the one-letter amino acid code):

A: SSYLGR
B: SDIFER
C: SSYKGR

A gene is composed of segments of protein-coding DNA called exons, which are split by segments of
noncoding DNA called introns. We can split genes A, B, and C into introns and exons as follows (exons
are underlined and all other regions represent introns).

A 5’ AGCTTCGAAGTTATCTTGGACGGACTTG 3’
B :5" AGTTTCCCAGGATATCTTCGAACGACTG 3’
C:5" AGGCTTCCCATCCTCCTATAAAGGTAGG 3’

a. Notice how similar A and C are as proteins despite being much more dissimilar than A and B as DNA
sequences. Give a biological reason for this observation (hint: look at the segmentation of the genes
into introns and exons!). Why might it be a better idea to align by amino acid sequence rather than
DNA?

b. There are 20 different amino acids and only 4 different nucleotides (used in DNA). Give a probabilistic
reason why aligning by amino acid sequence might be better than by DNA sequence.

Problem 3: Statistical Foundations of Sequence Alignment

The most popular type of substitution matrices are known as BLOSUM matrices. Blocks, or fixed regions
in a given set of aligned sequences, are used to create these substitution matrices. We are studying sequence
similarities among some breeds of cattle on Sorin’s farm and will analyze BLOSUM matrices derived from
their genomes.

Given an alphabet, > = {a, 3,7, 0}, the following block contains the sequences of a single, 3-residue
protein from each of nine cattle breeds: angus, belted galloway, brahman, charolais, dexter, gelbvieh,
hereford, holstein, limousin.

Angus
Belted Galloway
Brahman
Charolais
Dexter
Gelbvieh
Hereford
Holstein
Limousin

D lm| o | w|w ||

|| R [R D | >

WRIR (LR | D|R | @2

2

By determining the evolutionary information in the above block, we will develop an improved scoring
scheme for sequence alignment.

a.

What is the total number of residues we have in this block? How many ways can we pick a pair of
letters in each column? How many possible ways of picking letters from the above table are there?
Assume the paired letters must be in the same column.

Determine the observed frequencies for each alignment pair.

For each alignment pair, determine the expected frequency based on the above block, and calculate the
log-likelihood score, f, that compares the observed and expected frequencies for each pair.

Explain the meaning of positive, negative, and zero log-likelihood scores. Given this interpretation,
why would using log-likelihood scores as the scoring scheme be desirable for sequence alignment?

Interpret the final log-likelihood scores in this problem in terms of what they indicate about conserva-
tion of letters in this alphabet. Comment on how realistic this scoring scheme would be if we were to
use it to align actual genome sequences.

Bonus: More formally, we can express the log-likelihood score of aligning two letters a and b as:

far = 2log, Pab
dab

where:

i. pa» = P(a,b|M) is the joint probability of observing aligned letters a and b under the alignment
model M

ii. gup = P(a,b|R) = P(a|R)P(b|R) is the joint probability of observing aligned letters a and b under
a random model where letters appear independently.
Recall that local alignment requires the expected score of aligning two letters to be non-positive to en-

sure that alignments remain local. Therefore, if we want to use BLOSUM matrices for local alignment,
we need to ensure that the expected score f,;, is not positive.

Prove that the expected score E[f,;] for a randomly aligned pair of letters is not positive for any
alignment model M.

Hint: For any concave function g, E[g(X)] < g(E[X]).

Problem 4: Pseudoalignment

One important application of the sequence alignment algorithms we have been discussing in class is
the alignment of reads from RNA sequencing (RNA-seq) experiments. In an RNA-seq experiment,
mRNA transcripts from single cells (scRNA-seq) or a conglomeration of cells (bulk RNA-seq) are reverse-
transcribed into DNA, which can be sequenced on a next generation sequencing machine. The sequence of
each transcript, called a “read”, can then be aligned to a reference genome. The number of reads aligning
to each gene gives us an idea of the level at which each gene is being expressed.

RNA-seq experiments can generate millions of reads. As efficient as our dynamic programming align-
ment algorithms are, however, aligning all of these reads back to a reference genome usually requires a
high-performance computing cluster (like OSCAR at Brown!). This is where “pseudoalignment” algo-
rithms come in handy. Pseudoalignment algorithms don’t actually align all reads to a reference genome,
but rather identify which transcripts a read could have originated from. This approach results in a dramatic
decrease in computational complexity, allowing researchers to perform RNA-seq quantification on a lowly
laptop!

Please read the following blog post explaining how kallisto uses pseudoalignment. The post references a
De Bruijn Graph, which is central to the kallisto algorithm. A De Bruijn Graph is a graph with k-mers as
nodes. Nodes connected by an edge represent overlapping k-mers, offset by 1 base. A path through a De
Bruijn Graph represents a sequence. For instance, the sequence “AGCTGCAA” can be represented by the
full path through the following De Bruijn Graph, composed of 4-mers:

AGCTGCAA

(e
CTGC TGCA GCAA
()~ —(=)

Now, consider the following transcriptome De Bruijn Graph (T-DBG):

OO0
OO0 E5 6008

a. Consider the read “CCTGGAACCCGGTT”. Split it into 4-mers, and using the T-DBG above, list the
k-compatibility class of the node corresponding to each 4-mer (ex. “ACCT” = {A,B,C}).

b. Which transcript could the read “CCTGGAACCCGGTT” have come from? How did your work in
part (a) help you figure this out?

https://tinyheero.github.io/2015/09/02/pseudoalignments-kallisto.html

c. If the kallisto algorithm were run on the sequence “CCTGGAACCCGGTT” with the above T-DBG as
the kallisto index, which 4-mers would have been hashed to a k-compatibility class?

d. In general, why doesn’t the kallisto algorithm have to hash every k-mer of a given read to a k-
compatibility class? Please use your own words in your answer.

If you are interested in learning more about pseudoalignment, check out the full kallisto paper!

https://www.nature.com/articles/nbt.3519

