
Homework 4
CS 181, Fall 2025

Out: Nov. 3
Due: Nov. 14, 11:59 PM

Please upload your solutions on Gradescope. You can use LATEX or a word document to write up your
answers, but we prefer you use LATEX. You may scan hand-written work or images for parts of solutions
only if they are extremely clean and legible. Please ensure that your name does not appear anywhere in
your handin.

Problem 0: Readings
The following sections of the Barton textbook chapter, which can be found on the resources page of the
course website under Chapter 3 Readings. They may be helpful for Problems 3 and 4.

(a) For Distance Methods, Corrections Are Essential to Convert Measures of Similarity to Evolutionary
Distances, pgs. 27 - 29

(b) UPGMA and Neighbor-Joining Methods, pgs. 22 - 26

Problem 1: Building and using suffix trees
The CS 181 TAs are spending a day out on Sorin’s farm! But before they leave at the end of day, Sorin
wants to test what they have learned from working on the farm by giving them a special problem to solve.
They must find all the suffixes of the word, “OINKOINO”, and they’re enlisting your help to do so!

(a) Construct the expanded suffix tree Tx for the word x = OINKOINO. Build the tree one suffix at a
time, starting with suf1. Show the first four partial trees in your construction as well as the complete
suffix tree Tx.

(b) Show how to use your suffix tree to return the starting indices of all occurrences of the string OIN in
the text x. List all of these indices. In general, what is the big-O time complexity of returning the
starting indices of all occurrences of a pattern p in a text t? Explain.

(c) Show how to use your suffix tree to determine whether the string OINKOS occurs in x. Does it occur
in x? In general, what is the big-O time complexity of determining whether a pattern p occurs in a
text t? Explain.

(d) Bonus: Construct the compacted suffix tree and the position suffix tree for the word x = OINKOINO.
Explain why position suffix trees can be stored in O(n) space, whereas compact suffix trees require
O(n2) space.

Hints for this section: (1) You can assume that each node stores their children in a dictionary, so checking
for a given character in the direct children of a node is constant time. (2) When calculating Big-O time
complexity, consider what strings would create the worst-case scenario tree and how many nodes this tree
would have.

1

https://brown-cs181.github.io/resources.html
https://brown-cs181.github.io/resources.html


Problem 2: Longest shared substring
Consider the following problem:

LONGEST SHARED SUBSTRING PROBLEM

Input: Strings u and v.
Output: The longest substring that occurs in both u and v.

In theory, we could solve this problem by concatenating the two strings and constructing a joint suffix tree
for the resulting string. In this problem, we expand upon this idea.

We begin by appending two different end-of-string characters to u and v, giving us u# and v$. We
then build the suffix tree for the concatenation of these two strings, u#v$. We shall color the leaves of
this tree according to the following rule: if a leaf is labeled by the starting position of a suffix starting in
u, color it blue; if a leaf is labeled by the starting position of a suffix starting in v, color it red. Note that
all the leaves in the tree will be colored either red or blue according to this procedure.

Next we color the internal nodes of the tree according to the following rules:

• A node is colored blue (resp. red) if all the leaves in the subtree rooted at that node are blue (resp.
red).

• A node is colored purple if the subtree rooted at that node contains both blue and red leaves.

The following is an example of joint suffix tree for u#v$ where u = SAR and v = ARA:

2



For all tasks in this problem, assume that we are using expanded suffix trees.

(a) Explain how every path ending in a purple node in the suffix tree of u#v$ spells out a substring shared
by u and v.

(b) Explain how every path ending in a blue (resp. red) node in the suffix tree of u#v$ spells out a
substring that appears in u but not in v (resp. v but not in u). Note: If the path contains #, then the
substring spelled out by this path ends at #.

Given these two facts, it should be clear how we find the longest shared substring of u and v: We need
only examine the strings spelled by paths that lead to purple nodes; the longest such string is precisely the
solution to the Longest Shared Substring Problem.

The above approach makes use of a single suffix tree to solve the Longest Shared Substring Problem.
It is also possible to solve this problem using two suffix trees, one for each of u and v.

(c) Describe an algorithm that solves the Longest Shared Substring Problem using the two suffix trees Tu

and Tv.

(d) Compare (in as much detail as possible) the worst case space- and time-efficiency of the algorithm
that uses a single suffix tree for u#v$ with the worst case space- and time-efficiency of the algorithm
you designed in (c) above.

3



Problem 3: Jukes-Cantor Distance
(a) To get the feel of how to calculate the Jukes-Cantor distance, consider two biological sequences that

have accumulated mutations over time. Below are snapshots of the two sequences at 4 different points
in evolutionary time:

t = 1 t = 2 t = 3 t = 4
Sequence 1 AGGTCA AGCTCA AGCTCA AACTCA
Sequence 2 AGGTCA AGGTCA TGGTCA TGGTCC

For each timepoint t, calculate the fraction of sites that are different between the two sequences, λt.
Then use this value to calculate the Jukes-Cantor distance Dt between each sequence.

(b) Now consider a fifth timepoint:

t = 5
Sequence 1 AACTGA
Sequence 2 TGGTCC

Compute λ as above. What happens when you try to use this value to calculate the Jukes-Cantor
distance?

(c) Propose a correction to the Jukes-Cantor distance that avoids the issue above. What result do you
get when you calculate your new distance at t = 5? Explain in two or three sentences the potential
benefits and drawbacks of your new distance. It may be helpful to read up a little on the Infinite Sites
Model.

4



Problem 4: Neighbor Joining
It’s a special day at Sorin’s farm! A baby cockatiel, Coco, recently hatched from its egg and is learning
to fly. Despite being a hatchling, Coco is already flapping her tiny wings and visiting all of the animals
on the farm. Inspired by the barn owl and the chickens she has seen so far, Coco wants to understand the
evolution of the farm’s birds over the decades and perhaps discover a distant cousin or two. Coco decides
to build an evolutionary tree for the various birds and their relatives.

Justinoavis Alliavis Sorinoavis Chicken Coco
Justinoavis
Alliavis 135
Sorinoavis 159 24
Chicken 213 78 54
Coco 177 42 18 36

Use the distance matrix above and the neighbor joining algorithm to construct an evolutionary tree for the
birds above. In a sentence or two, comment on Coco’s place in the evolution of birds.

5


