
Homework 5
CS 181, Fall 2024

Out: Nov. 19
Due: Dec. 6, 11:59 PM

Please upload your solutions on Gradescope. You can use LATEX or a word document to write up your
answers, but we prefer you use LATEX. You may scan hand-written work or images for parts of solutions
only if they are extremely clean and legible. Please ensure that your name does not appear anywhere in
your handin.

Problem 1: Hidden Markov Models
A HMM has been constructed to generate a sequence, O, of symbols consisting of 2 states S = {1, 2}.
Each time the model visits a state, one symbol (A, C, T , or G) is generated. The emission probability
distribution for state 1, or b1, is:

Emission A C T G
Probability 0.1 0.1 0.2 0.6

On the other hand, b2 is:

Emission A C T G
Probability 0.3 0.2 0.4 0.1

The state transition matrix A is:

State 1 2
1 0.7 0.3
2 0.4 0.6

Finally, the initial probability distribution, π, is:

State 1 2
Probability 0.5 0.5

a) Calculate the most likely sequence of states using the Viterbi algorithm for O = TCG. Show your
work.

b) Use the forward algorithm to determine the probability that the sequence TCG was generated by the
HMM above. Show your work.

c) Briefly compare and contrast the Viterbi algorithm and the forward algorithm. In particular, explain
the Viterbi and forward algorithms in terms of which sequences of states they consider, and which
components are factored into their final calculation. Hint: think about the difference in the recurrence
step of each algorithm.

d) Use the backward algorithm to determine the probability that the sequence TCG was generated by
the HMM above. How does this probability compare to your answer from part b? Show your work.
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e) Use the forward-backward algorithm along with your answers from parts b and c to determine
P (q2 = 2|O = TCG), the probability that the HMM above was in state 2 at time t = 2 while
generating the sequence TCG. Time t = 2 represents the second observation point, O2 = C. Show
your work.

Problem 2: Multiple Alignment and Homology with HMMs
Sorin recently adopted a rare Zebu cow he lovingly named Lumpy. While sequencing Lumpy’s genome,
Sorin notices a couple stretches of DNA that look very similar to a set of known homologous genes present
in other bovines. Curious as to whether these sequences are actually evolutionarily related to the known
homologous genes, Sorin turns to you, a distinguished computational biologist in CS181!

Remembering that you have recently learned how HMMs can probabilistically model sequence data, you
decide to use an HMM to try to answer Hannah’s question. To begin, you first use the alignment algorithms
you learned at the beginning of CS181 to perform multiple alignment on the set of homologous genes she
has provided:

1 T - C T G
2 T - A T G
3 T - T T G
4 T - C T A
5 T C T A G
6 T - G T G
7 T - G - G
8 T - C C G

Consensus T - C T G

After determining that the consensus gene sequence is TCTG, you next construct an HMM with three
states for every position in the consensus sequence:

1. Mi, a state representing matches and mismatches

2. Ii, a state representing insertions

3. Di, a state representing deletions

At each position in the consensus sequence, you determine that 3 types of alignments from a homologous
sequence to the consensus sequence are possible. Each of these alignments can be represented by a
sequence of transitions in the HMM:

1. A match or mismatch, represented by transitioning directly to Mi

2. An insertion of some number of nucleotides in the homologous sequence followed by a match or
mismatch, represented by transitioning to Ii, staying in Ii for some time, and then transitioning to
Mi

3. A deletion in the homologous sequence, represented by transitioning to Di
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After one of these transition sequences is performed, the alignment will proceed to the next position in
the consensus sequence. The diagram below depicts all possible state transitions in this HMM. Notice
the addition of one extra insertion state at the end to allow for insertions after the final character in the
consensus sequence.
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end

Finally, you define the following transition and emission probabilities for your HMM to represent the
likelihood that the consensus sequence is mutated in various ways:

Initial State M1 I1 D1

Probability 0.8 0.1 0.1

Transitions Mi+1 Di+1 Ii+1

Mi 0.8 0.1 0.1
Di 0.5 0.5 -
Ii 0.5 - 0.5

Emissions A C T G -
Mi ? ? ? ? -
Di - - - - 1
Ii 0.25 0.25 0.25 0.25 -

Final Transitions I5 end
M4 0.1 0.9
D4 - 1
I5 0.5 0.5

A transition from Mi to Mi+1 indicates a match or mismatch; Mi to Di+1 indicates a new deletion region;
Mi to Ii+1 indicates a new insertion. The transition probabilities from the ”Final Transitions” matrix re-
flect the cases that there are additional insertions or that the sequence ends.

You will calculate the emission probabilities for each state Mi below.

3



Tasks:

a. For each state Mi, determine the emission probabilities of each letter A, T, C, and G. Refer to the table
of homologous sequences to calculate the proportion of each letter found at each index.

b. Suppose you are given an alignment between the consensus sequence and a new sequence. Describe
a reasonable heuristic you could use in lieu of the canonical algorithms to estimate the most likely
sequence of states from this HMM that generated the new sequence.

c. Using your heuristic from part (b), estimate the most likely sequence of states from this HMM that
generated each of the following sequences:

i. The consensus sequence TCTG, given the alignment:
TCTG
TCTG

ii. The homologous sequence TCG, given the alignment:
TCTG
TC-G

iii. Hannah’s first new sequence TAACTG, given the alignment:
T--CTG
TAACTG

iv. Hannah’s second new sequence TAAG, given the alignment:
TCTG
TAAG

d. Determine the probability that your HMM will generate each sequence in part (c) while also following
your proposed most likely sequence of states. Show your work.

e. While computing probabilities in part (d), you may have noticed that the probabilities of observing
longer sequences of letters will necessarily tend to be smaller than the probabilities of observing shorter
sequences of letters. As a result, when comparing sequence data of different lengths, we typically
normalize our resulting probabilities by dividing by the probability of observing each emitted sequence
due to random chance. Given that your HMM can emit 5 different characters (A,T,C,G,-), normalize
each of your probabilities from part (d) in this way.

f. Do you think that the new sequences are likely to be evolutionarily related to the homologous sequences
given? Explain your reasoning.

Bonus (very much extra, don’t waste too much time on this): A multivariate HMM H is given by a
tuple (S, V,M,B, π) where S is again a set of states, M is again a state transition matrix, and π is again an
initial state distribution. As the name suggests, however, V is no longer a single random variable with its
set of outcomes, but rather a set of random variables, each with its own outcome set. That is, rather than
emitting a single observation, each state now emits a tuple of observations. As you might imagine, this
means that B must now give a joint distribution over all the emission variables for each state. Given the
high-dimensional nature of most modern data, you can see how multivariate HMMs might be considered
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more common and more natural than the univariate HMMs you’ve learned about in class. And with some
thought, the algorithms we’ve learned generalize nicely to the multivariate case.

Let’s extend this model a little bit. Now, suppose that we have a set of Mx̄ where x is an observation.
That is, we have a transition matrix for each observation, so that the next transition depends on the current
emission. Clearly, this is no longer an HMM, but all our algorithms carry over nicely, and this type of
model is much more expressive. We’ll call it a hidden conditional Markov Model (HCMM).

Your task is to formulate a multivariate homology HCMM which takes in aligned homologous sequences
like those given in part c). That means you should give (S, V,M,B, π), but don’t forget to make V a set of
symbol sets, B a set of joint distributions, and M a set of transition matrices indexed by emissions!

Problem 3: HMMs and Ancestry Deconvolution
Many ancestry testing companies like 23andMe use algorithms involving HMMs to trace your ancestry.
(If you’re interested, you can read more about 23andMe’s ancestry deconvolution algorithm here.)

a. Suppose you are given a DNA sequence and a set of ancestries from which this DNA sequence could be
descended. How could you use an HMM to determine what fraction of the DNA sequence is descended
from each ancestry? In your response, be sure to answer the following questions:

i. What are the hidden states of the HMM?

ii. What are the emissions of the HMM?

iii. What biological phenomenon is represented by transitions between hidden states?

iv. What algorithm(s) from this class would you use to determine the fraction of the DNA sequence
descended from each ancestry?

After you get your ancestry results, ancestry testing companies often continue to store your genomic data
for future use. Read this article about how stored genomic data can be used and this article about how to
protect your genomic data.

b. Give three examples from the articles of how your genomic data could be useful.

c. Compare and contrast how medical institutions and non-healthcare private companies can use genomic
data.

Problem 4: HMMs and CpG Islands
The following excerpt defines CpG islands and their biological significance.

”In the human genome wherever the dinucleotide CG occurs (frequently written CpG to distin-
guish it from the C-G base pair across the two strands) the C nucleotide (cytosine) is typically
chemically modified by methylation. There is a relatively high chance of this methyl-C mutat-
ing into a T, with the consequence that in general CpG dinucleotides are rarer in the genome
than would be expected from the independent probabilities of C and G. For biologically im-
portant reasons the methylation process is suppressed in short stretches of the genome, such
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as around the promoters or ’start’ regions of many genes. In these regions we see many more
CpG dinucleotides than elsewhere, and in fact more C and G nucleotides in general. Such
regions are called CpG islands.” (Durbin, Eddy, Krogh, Mitchison, 1998)

We want to model this biological phenomena as a HMM. The HMM should help us determine if (i) given
a short sequence, this sequence comes from a CpG island or not and (ii) given a long sequence, how to
find all of the CpG island occurrences, if any.

a. What are the hidden states of the HMM?

b. What are the emissions of the HMM?

c. Construct an appropriate transition probability matrix with all of the values populated. Justify your
chosen values. (Consider if certain values should be greater than or less than others.)

d. To improve the accuracy of our HMM, we need to ensure that the emission and transition probabilities
are reasonable and well-calibrated. How can we enhance the model’s accuracy?
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