
Programming Project 3: Phylogeny
CS 181, Fall 2025

Out: Nov. 3
Due: Nov. 17, 11:59 PM

1 Task
After their visit to the New England Aquarium, the CS 181 TAs have developed a newfound curiosity
for sea urchins. They decide to do some reading and find a recent study, which explores the potential
of autonomous sampling in environmental DNA (eDNA) research. eDNA is an emerging and powerful
method for use in marine research, conservation, and management, yet time- and resource-intensive pro-
tocols limit the scale of implementation. The potential of autonomous sampling offers great opportunity
for this field, but also introduces the challenge of how to analyze large amounts of data. The CS 181 TAs
want to explore the phylogenetic relationships between species identified by the eDNA, but they need your
help! They missed the lecture where the UPGMA algorithm was covered, so you will need to implement
the UPGMA algorithm as described in lecture. . . keep reading to find out more.

2 Phylogeny Specifications

2.1 Setup
To grab the support code, run git pull in your CS181 projects directory. This will fill in the stencil
code in the project3 directory.

2.2 Reminders About Programming Language
Our Gradescope autograder is currently configured to accept solutions written in Python 2, Python 3, Java,
R, and Julia.

Your solutions generally should not require the installation of any packages that do not come in the stan-
dard installations of your chosen programming language. However, if you are using Python, you will also
have access to numpy and pandas, as well as graphviz for writing DOT files. Check graphviz website and
user guide for more information regarding its installation and usage. If you’d like to implement the priority
queue-based UPGMA algorithm discussed in class, you may also use the heapq in Python or manually
attach the liqueueR package to your handin in R. You are NOT required to do this.

To facilitate anonymized & automated grading, each of your solutions must be accompanied by a shell
script. Make sure each problem is able to output the correct result using the shell script provided. The
shell script you turn in must explicitly call your language’s compiler or interpreter. If you are using
Python 3, your shell script must run your program using the command “python3” rather than “python”, as
“python” will run your code with Python 2.

1

https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.299
https://www.graphviz.org/
https://graphviz.readthedocs.io/en/stable/manual.html


Your shell scripts should print exactly what is shown in the examples given for each problem. If you print
any extra text, you will fail our autograder and lose points. This means that if you are coding in R, you
may need to print text using “cat()” instead of “print()”.

Be sure to print any terminal output to stdout, which is the channel that the standard print functions write
to in most programming languages. If you print to stderr, your solution will be interpreted as an error
message and fail the autograder.

2.3 Shell Scripts
You must provide a shell script, upgma.sh, that accepts two arguments and can be run using the following
command:
> sh upgma.sh sample.dist output.dot

. . . where sample.dist will be a distance matrix and output.dot will be the name of the DOT
output file, both of which are described below.

The program you hand in should not throw exceptions for any valid inputs.

2.4 Input Format
The input to the UPGMA algorithm is a distance matrix, represented here as follows. A distance matrix
file is given a .dist extension, and provides the distance for each pair of species.

Each line has three fields separated by spaces: two species names and a distance value. It will always be
two strings followed by a single floating point number.

For example, the line b d 3.0 means that the evolutionary distance between species b and species d is
3.0. Thus, a sample input might be:

a b 5.0
b d 3.0
a d 4.0

You can expect the distances to be symmetric and consistent. In other words, you will never be given
something like

first_species second_species 10.0
...
second_species first_species 5.0

2.5 Output Format
Your algorithm’s result should be a rooted ultrametric binary tree.

There are two outputs for your program, both of which must be output simultaneously. We will use
both of these for grading to allow for partial credit, but the latter should come in handy for debugging as
well.

2



1. A printed output for the hierarchical clustering. Whenever the algorithm decides to join two nodes
with labels x and y together, the new node’s label should be (x,y). They should be concatenated
in lexicographic order, so (y,x) is considered invalid.

If two pairs of nodes are tied at any given step, choose the pair whose merged labeling would come
first lexicographically.

Here is an example:

(a) a and d gets joined into (a,d).

(b) c and b gets joined into (b,c). (note the ordering)

(c) (a,d) and (b,c) gets joined into ((a,d),(b,c)), based on the lexicographical ordering
of the strings “(a,d)” and “(b,c)”.

So for the above hypothetical example, your program should behave as follows:

> sh upgma.sh sample.dist tree.dot
((a,d),(b,c))

Notice that two arguments are provided: a distance matrix and an output filename ending in .dot.

Furthermore, note that the printed output should have no whitespace (e.g. no spaces after commas),
and that parentheses precede all letters in lexicographic order. So, if a and (b,c) were merged at
some step, the resulting node should have label ((b,c),a).

2. The tree in DOT format, saved to the specified file. In the above example, this would be tree.dot.
To output your graph, your program should write a correct phylogenetic tree in DOT format.

graph mytree {
a0 -- ab1
b0 -- ab1
c0 -- cd1
d0 -- cd1
ab1 -- abcd2
cd1 -- abcd2

}

In DOT format, an edge between two vertices is indicated by --. The name of the tree (mytree
in the above example) does not matter. Nodes should be labeled by both their descendant nodes
in the same order as the printed output (or the character in the distance matrix, if a leaf node) and
their heights in the tree – that is, the UPGMA height, not graph theoretic height. This means
that based on the UPGMA algorithm’s clustering, you should assign each leaf node a height of 0
and each parent node a height of 1 greater than the maximum height of its children, as opposed to
assigning heights based on the evolutionary distances specified in the input distance matrix. So the
DOT file above corresponds to the following tree.

3



Note that if your tree has multiple nodes at the same height, you will need to ensure that these nodes
have unique names so that the tree is constructed correctly. Nodes must be labeled with descendants
followed by height.

Using DOT makes it very easy for you to visualize your output. Say, for example, that your program
outputs a file called tree.dot. One can easily visualize this tree using dot program, by typing
into the terminal

dot -Tpng tree.dot -o tree.png

This will produce a graphic image in PNG format, and save it to a file called tree.png.

Alternatively, you can use this online Graphviz visualizer.

If you’re not working on a department machine, you can get the dot program by installing graphviz.

3 Application
COVID-19 is caused by the virus SARS-CoV-2, but you might have heard of (or remember) earlier viral
outbreaks, such as the MERS epidemic from 2012 or the SARS epidemic from 2002. All of these have
been caused by a family of viruses known as coronaviruses, which are named for their “crown-like”
appearance owing to the spike (S) proteins on their surface. S proteins bind to specific receptor proteins
and facilitate the viruses’ infection of host cells. Coronaviruses are responsible for certain respiratory
diseases in humans, but they also affect other organisms in a variety of ways. Given the diversity of hosts,
effects, and viral species, just how related are all of these coronaviruses? In this task you will use your
UPGMA algorithm to begin exploring these relationships by constructing a phylogeny.

The set-up script should have provided you with a folder, application, containing a set of 5 FASTA
files. We’ve removed all labels from these files, but they contain amino acid sequences corresponding to
various spike proteins. Your task will be to construct a phylogeny based on these sequences.

You are free to choose any distance metric you like or devise your own. You may also use your align-
ment program from PR1 or any of the alignment tools listed below to assist you with obtaining pairwise
distances. Be sure to justify your decisions.

• EMBOSS; this toolkit offers several options for alignment algorithms and will present you with
percent identity, percent similarity, gap frequency, and alignment scores.

4

https://dreampuf.github.io/GraphvizOnline/
https://www.ebi.ac.uk/Tools/psa/


• SIM; this program finds non-intersecting alignments between two sequences and will present you
with percent identity, gap frequency, and alignment scores.

• LALIGN; this program offers several options for alignment algorithms and will present you with
percent identity, percent similarity, and alignment scores.

• BLASTP, making sure to select “Align two or more sequences”; this program performs the BLAST
algorithm (Basic Local Alignment Search Tool) and will present you with percent identity and align-
ment scores.

Once you have constructed your phylogeny, answer the following questions:

1. What conclusions can you draw about the relationships between samples? Discuss at least two pairs
or groups of labels.

AFTER you’ve finished analyzing your phylogeny, take a look at the true viral label for each sample,
which is shown on the last page of this PDF.

2. Comment on the accuracy of your phylogeny. Do the relationships in your phylogeny appear sen-
sible and consistent with the label assignments? If so, explain your reasoning. If not, provide a
possible explanation that attempts to reconcile these discrepancies.

3. Justify the distance metric that you chose (and the alignment parameters, if applicable). Are there
any changes that you would make to your workflow? Why or why not?

4. Comment on our decision to use spike protein sequences. Is there an alternative type of data that
you would use instead? Why or why not?

You should submit a reproducible description of your workflow with enough detail for us to trace your
steps from start to finish, the final phylogeny you generate, and answers to the application questions above
in a file named application.pdf

4 README
You must include a README file. Include the following information:

• A description of any known bugs

• Anything you want the TAs to know about your project

5 Handin
To hand in this assignment, upload your shell scripts along with all files needed to run your code on
Gradescope. If you have any subdirectories or folders that you would like to preserve in your handin, you
will need to compress your submission into a zip file and upload the zip file to Gradescope. However, to
ensure that the autograder runs your handin properly, make sure that all shell scripts are present at the root
of your handin; in other words, do not place your shell scripts inside any folders.

5

https://web.expasy.org/sim/
https://embnet.vital-it.ch/software/LALIGN_form.html
https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastp&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome


When you hand in your solution, our autograder will immediately run on your submission. We have made
the test cases provided in the project handout immediately visible to you so that you can ensure your
solution runs properly with the autograder. If you fail the autograder and cannot determine why, notify
a TA and we will help you to diagnose the problem. If your final submission is not compatible with our
autograder, it will be very difficult for us to give you credit for this assignment.

6 Grading
We will grade your handin using pre-generated test cases with a certain number of points allocated per test
case. Test edge cases extensively!

ATTENTION: DO NOT scroll to the next page of the PDF until AFTER you have finished implementing
UPGMA and responding to the first application question.

6



Samples and viral labels:

A: Human MERS-CoV spike protein (2013)

B: Ebola spike protein

C: Bat coronavirus spike protein (2020)

D: SARS-CoV-1 spike protein (2003)

E: SARS-CoV-2 spike protein (2020)

7


	Task
	Phylogeny Specifications
	Setup
	Reminders About Programming Language
	Shell Scripts
	Input Format
	Output Format

	Application
	README
	Handin
	Grading

