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The Algorithm

Inputs: Reads (fragments) f1, f2, … fN and length k

1. Obtain the union of the spectrum of all reads

2. Construct the sequence graph with (k-1)-tuples as nodes from spectra in (1)

3. Perform a variant of Eulerian tour to infer sequence(s)

4. Align the reads to the inferred sequence(s) in (3)
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First, we identify the set of 

all k-mers (substrings of 
length k) present in the 
data.

Let’s choose k = 4.

1) Obtain the union of spectra for all reads
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1) Obtain the union of spectra for all reads
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2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

For each k-mer (a1…ak), we 
create an edge between nodes 
labeled a1…ak-1 and a2…ak.

If those nodes do not exist yet, 
we add them to the graph.

We label the edge by its k-mer, 
a1…ak.

We also store the set of position 
values (f, i, j) in each edge, 
which identify all occurrences of 
that k-mer by (fragment index, 
start position, end position)*



2) Construct the sequence graph on (k-1)-mers
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2) Construct the sequence graph on (k-1)-mers
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2) Construct the sequence graph on (k-1)-mers
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2) Construct the sequence graph on (k-1)-mers
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This graph is sufficient to begin 

searching for an Eulerian path, 
but we can simplify the graph 
beforehand to make inference 

simpler.

There are three types of graph 
reductions that are possible, 
which we will illustrate next.



2) Construct the sequence graph on (k-1)-mers
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This graph is sufficient to begin 

searching for an Eulerian path, 
but we can simplify the graph 
beforehand to make inference 

simpler.

There are three types of graph 
reductions that are possible, 
which we will illustrate next.

Why did we bother storing 
positional information, (f, i, j)?

These are useful for establishing 
continuity when performing 
reductions and the Eulerian tour. 



2a) Graph reductions: singletons

ABC

Singletons are nodes with indegree = 1 

and outdegree = 1 (i.e., a node v with 
exactly one incoming edge [u, v] and 
exactly one outgoing edge [v, w]).

We simplify this feature by removing 

the node v and its incident edges, 
replacing it with a new edge [u, w].

This new edge has a label which 
merges the two labels of the previous 

edges. 

Likewise, it stores the position tuples of 

the previous edges, merged where 
possible.*

Formally, this is:

{(f, i, m) | (f, i, j+k-2) ∊ [u, v] and (f, j+k-2, m) ∊ [v, w]}
∪ {fragment ends of [u, v]} ∪ {fragment starts of [v, w]}

BCD CDE
ABCD BCDE

(1, 2, 5)

(4, 6, 9)

(5, 4, 7)

(1, 3, 6)

(5, 5, 8)

(9, 1, 4)
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2b) Graph reductions: forks

ABC

Forks are nodes with indegree = 1 and 

outdegree > 1 (i.e., a node v with 
exactly one incoming edge [u, v] and 
outgoing edges [v, w1], [v, w2], …).*

A node with outdegree > 1 indicates 

either a sequencing error or a 
repetitive region. We apply a heuristic 
approach to resolve this feature.

Of the outgoing edges, keep only the 

one which has the most occurrences 
continuing from the incoming edge. If 
the number of such occurrences is 

roughly equal for all edges, leave the 
fork in the graph.*

Idury and Waterman formalize this heuristic as the 

overlap test, but the explanation here is the rough 
intuition behind its behavior.

CDE

ABCD

CDF

ABC

BCDE

BCDF

“Reverse forks” (i.e., nodes with indegree > 1 and 

outdegree = 1) can also be resolved analogously.

(1, 2, 5)

(3, 3, 6)
(6, 1, 4)

(1, 3, 6)

(3, 4, 7)
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outdegree > 1 (i.e., a node v with 
exactly one incoming edge [u, v] and 
outgoing edges [v, w1], [v, w2], …).*

A node with outdegree > 1 indicates 

either a sequencing error or a 
repetitive region. We apply a heuristic 
approach to resolve this feature.

Of the outgoing edges, keep only the 

one which has the most occurrences 
continuing from the incoming edge. If 
the number of such occurrences is 

roughly equal for all edges, leave the 
fork in the graph.*

Idury and Waterman formalize this heuristic as the 

overlap test, but the explanation here is the rough 
intuition behind its behavior.

CDE

ABCD

CDF

ABC

BCDE

(1, 2, 5)

(3, 3, 6)

(1, 3, 6)

(3, 4, 7)

“Reverse forks” (i.e., nodes with indegree > 1 and 

outdegree = 1) can also be resolved analogously.
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2c) Graph reductions: crosses

CDE

Crosses are nodes with indegree > 1 

and outdegree > 1 (i.e., a node v with 
incoming edges [u1, v], [u2, v], … and 
outgoing edges [v, w1], [v, w2], …).

We again apply a heuristic approach to 

resolve this feature, which may be the 
result of sequencing errors or repetitive 
regions.

If there are pairs of edges which have 

continuing occurrences with each 
other, merge these pairs of edges.* Idury and Waterman formalize this by applying the overlap 

test in both directions (i.e., merge [u1, v] and [v, w1] if [v, w1] 
passes the overlap test for [u1, v] and [u1, v] passes the 
overlap test for [v, w1]).
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2) Irreducible sequence graph

TTC AGG

GAC

TTCATGGAC

GACATCGAC

The graph has now been fully 

reduced, and we can search 
for an Eulerian path.

You may notice that the 

reductions accumulate lots of 
occurrence tuples within the 
graph edges. These 

remaining edges are referred 
to as “super edges,” and in 

general, we assign more 
weight (confidence) to edge 
labels with more occurrences.



3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as 

having outdegree - indegree = 1 
and the terminal node as having 
indegree - outdegree = 1.

start

end
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end

Beginning with the start node, 

follow outgoing edges until all 
edges are used once and the 
terminal node is reached. Infer 

the sequence by merging edge 
labels along the path taken.

If there are multiple outgoing 

edges to follow, choose edges 
based on the continuity of 
occurrences and edge weights.
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4) Align the reads to the inferred sequence

TTCATGGACATCGA

C
TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

First, we apply hashing 
methods to identify where 
each fragment might align 
well to the sequence.

This will produce 
“candidate diagonals.”

We can then perform 
alignment along those 
diagonals, which is more 
efficient than using the 
entire edit graph.
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Statistics of Sequence Graphs

We have seen that graph reductions greatly help to limit the size of the sequence 

graph during assembly. But how many reductions can we expect to make? What 

do we expect the graph structure to look like?

Define the following:

● k = tuple size, edge label length

● L = length of original sequence

● N = number of fragments (reads)

● ℓ = average fragment length

● c = mean depth of coverage

● T = N(ℓ - k + 2) = number of (k-1) regions

● r = error rate

Assume:

1. Errors are uniformly distributed over fragments 

and the length of each fragment

2. Error rate r is small

3. For any position i of the original sequence, the 

number of fragments covering i…(i+k-2) is a 

Poisson random variable

4. There are no repeats of length at least k

5. The only sequencing errors are substitutions



Statistics of Sequence Graphs

Let L’ = L - k + 2 and R = 1 - (1 - r)(k-1)

This is the number of (k-1)-mers 

in the original sequence.

This is the (k-1)-mer error rate.

Then we have the following results:



Here we will briefly outline the proof of (1):

Vertices in the sequence graph can be classified as true (if they are found in the 

original sequence) or false (if they are generated from a sequencing error).

We can compute the number of expected vertices as the sum of the expected 

number of true vertices and the expected number of false vertices.

If T is the number of (k-1)-mers in our read set, and R is the false (k-1)-mer rate, 

then the expected number of false vertices is RT.

Statistics of Sequence Graphs: vertices



To find the expected number of true vertices, we consider that the number of true 

vertices is equivalent to the number of positions such that at least one fragment 

has no sequencing errors.

Recall that the depth at a particular position (number of reads covering that 

position) is a Poisson variable with mean c ⇔ X ~ Poisson(c). So we have:

Statistics of Sequence Graphs: vertices

Number of (k-1)-mers in 

the original sequence

Probability that at least 

1 out of i reads is 
correctly sequenced 

Probability that i reads 

cover the (k-1)-length 
region

Expectation over 

all possible values 
for X ~ Poisson



Statistics of Sequence Graphs: vertices

pmf of Poisson: 

using Taylor 

expansion for e: 

Summing the number of false vertices and true vertices produces:



What did we expect from our example sequence graph?

● k = 4

● L = 15

● N = 8

● ℓ = 50/8 = 6.25

● c = 50/15 = 3.33

● T = 32

● r = 1/50 = 0.02

TTCATGGACATCGA

C
TTCAGG
TTCATGG

ATGGACA
TTCAT

CATCGAC
TCGAC

GACATC
ACATCGA
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What did we expect from our example sequence graph?

E(|V|) ≈ 14.318

E(|S|) ≈ 12.869

E(|F|) ≈ 1.387
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What did we expect from our example sequence graph?

E(|V|) ≈ 14.318

E(|S|) ≈ 12.869

E(|F|) ≈ 1.387

|V| = 13

|S| = 8

|F| = 1

This also predicts that we 

could simplify the graph to 
1-3 nodes

TTC GAC

TTCATGGAC

GACATCGAC



Practical considerations

● The Idury-Waterman algorithm pioneered the use of De Bruijn graphs in 

assembly, particularly with the advent of shotgun sequencing over 

sequencing by hybridization

● The technical challenges associated with repeat regions, cost limitations on 

sequencing depth, and sequencing errors require heuristics to resolve
○ Idury and Waterman propose utilizing positional information, incorporating both multiplicity of 

k-mers and fragment continuity as deciding factors

● The randomness of sequencing errors and sampling reads prevents concrete 

upper bounds on efficiency but allow for probabilistic estimates of 

computational performance
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