
Idury-Waterman Algorithm

(1995)
CS1820/2820: Algorithmic Foundations of Computational Biology

Spring 2022

Prof. Sorin Istrail

The Algorithm

Inputs: Reads (fragments) f1, f2, … fN and length k

1. Obtain the union of the spectrum of all reads

2. Construct the sequence graph with (k-1)-tuples as nodes from spectra in (1)

3. Perform a variant of Eulerian tour to infer sequence(s)

4. Align the reads to the inferred sequence(s) in (3)

An example:

TTCATGGACATCGAC

An example:

TTCATGGACATCGAC
TTCAGG CATCGAC
TTCATGG TCGAC

ATGGACA
GACATC

ACATCGATTCAT

An example:

TTCAGG CATCGAC

TTCATGG TCGAC

ATGGACA GACATC

ACATCGATTCAT

f
1f
2
f
3
f
4

f
5f
6
f
7
f
8

An example:

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

First, we identify the set of

all k-mers (substrings of
length k) present in the
data.

Let’s choose k = 4.

1) Obtain the union of spectra for all reads

TTCAGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA, TCAG, CAGG

ATGG, TGGA, GGAC, GACA

TTCA, TCAT

CATC, ATCG, TCGA, CGAC

TCGA, CGAC

GACA, ACAT, CATC

ACAT, CATC, ATCG, TCGA

TTCATGG TTCA, TCAT, CATG, ATGG

1) Obtain the union of spectra for all reads

1) Obtain the union of spectra for all reads

TTCAGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA, TCAG, CAGG

ATGG, TGGA, GGAC, GACA

TTCA, TCAT

CATC, ATCG, TCGA, CGAC

TCGA, CGAC

GACA, ACAT, CATC

ACAT, CATC, ATCG, TCGA

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTCATGG TTCA, TCAT, CATG, ATGG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

For each k-mer (a1…ak), we
create an edge between nodes
labeled a1…ak-1 and a2…ak.

If those nodes do not exist yet,
we add them to the graph.

We label the edge by its k-mer,
a1…ak.

We also store the set of position
values (f, i, j) in each edge,
which identify all occurrences of
that k-mer by (fragment index,
start position, end position)*

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(1, 1, 4)

(2, 1, 4)
(4, 1, 4)

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(1, 2, 5)

CAG

TCAG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(1, 3, 6)

CAG

TCAG

AGG

CAGG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(2, 2, 5)

(4, 2, 5)

CAG

TCAG

AGG

CAGG

CAT

TCAT

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(2, 3, 6)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(2, 4, 7)

(3, 1, 4)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(3, 2, 5)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(3, 3, 6)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(3, 3, 6)

(7, 1, 4)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(5, 1, 4)

(7, 3, 6)
(8, 2, 5)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

(5, 2, 5)

(8, 3, 6)

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

TCG

ATCG

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

TCG

ATCG

CGA

TCGA

(5, 3, 6)

(6, 1, 4)
(8, 4, 7)

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

TCG

ATCG

CGA

TCGA

(5, 4, 7)

(6, 2, 5)

CGAC

(7, 2, 5)

(8, 1, 4)

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

TCG

ATCG

CGA

TCGA
CGAC

ACAT

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTCA

TCAG
CAGG
TCAT

CATG
ATGG

TGGA
GGAC
GACA

CATC
ATCG

TCGA
CGAC
ACAT

TTC TCA

TTCA

CAG

TCAG

AGG

CAGG

CAT

TCAT

ATG CATG

TGG

ATGG

GGA

TGGA

GAC

GGAC

ACA

GACA

ATC

CATC

TCG

ATCG

CGA

TCGA
CGAC

ACAT

2) Construct the sequence graph on (k-1)-mers

TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

TTC TCA

TTCA

CAG

TCAG

AGG
CAGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2) Construct the sequence graph on (k-1)-mers

TTC TCA

TTCA

CAG

TCAG

AGG
CAGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

This graph is sufficient to begin

searching for an Eulerian path,
but we can simplify the graph
beforehand to make inference

simpler.

There are three types of graph
reductions that are possible,
which we will illustrate next.

2) Construct the sequence graph on (k-1)-mers

TTC TCA

TTCA

CAG

TCAG

AGG
CAGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

This graph is sufficient to begin

searching for an Eulerian path,
but we can simplify the graph
beforehand to make inference

simpler.

There are three types of graph
reductions that are possible,
which we will illustrate next.

Why did we bother storing
positional information, (f, i, j)?

These are useful for establishing
continuity when performing
reductions and the Eulerian tour.

2a) Graph reductions: singletons

ABC

Singletons are nodes with indegree = 1

and outdegree = 1 (i.e., a node v with
exactly one incoming edge [u, v] and
exactly one outgoing edge [v, w]).

We simplify this feature by removing

the node v and its incident edges,
replacing it with a new edge [u, w].

This new edge has a label which
merges the two labels of the previous

edges.

Likewise, it stores the position tuples of

the previous edges, merged where
possible.*

Formally, this is:

{(f, i, m) | (f, i, j+k-2) ∊ [u, v] and (f, j+k-2, m) ∊ [v, w]}
∪ {fragment ends of [u, v]} ∪ {fragment starts of [v, w]}

BCD CDE
ABCD BCDE

(1, 2, 5)

(4, 6, 9)

(5, 4, 7)

(1, 3, 6)

(5, 5, 8)

(9, 1, 4)

2a) Graph reductions: singletons

ABC

Singletons are nodes with indegree = 1

and outdegree = 1 (i.e., a node v with
exactly one incoming edge [u, v] and
exactly one outgoing edge [v, w]).

We simplify this feature by removing

the node v and its incident edges,
replacing it with a new edge [u, w].

This new edge has a label which
merges the two labels of the previous

edges.

Likewise, it stores the position tuples of

the previous edges, merged where
possible.*

Formally, this is:

{(f, i, m) | (f, i, j+k-2) ∊ [u, v] and (f, j+k-2, m) ∊ [v, w]}
∪ {fragment ends of [u, v]} ∪ {fragment starts of [v, w]}

BCD CDE
ABCD BCDE

(1, 2, 5)

(4, 6, 9)

(5, 4, 7)

(1, 3, 6)

(5, 5, 8)

(9, 1, 4)

ABCDE

(1, 2, 6)

(4, 6, 9)

(5, 4, 8)

(9, 1, 4)

2a) Graph reductions: singletons

ABC

Singletons are nodes with indegree = 1

and outdegree = 1 (i.e., a node v with
exactly one incoming edge [u, v] and
exactly one outgoing edge [v, w]).

We simplify this feature by removing

the node v and its incident edges,
replacing it with a new edge [u, w].

This new edge has a label which
merges the two labels of the previous

edges.

Likewise, it stores the position tuples of

the previous edges, merged where
possible.*

Formally, this is:

{(f, i, m) | (f, i, j+k-2) ∊ [u, v] and (f, j+k-2, m) ∊ [v, w]}
∪ {fragment ends of [u, v]} ∪ {fragment starts of [v, w]}

CDE
ABCDE

(1, 2, 6)

(4, 6, 9)

(5, 4, 8)

(9, 1, 4)

2a) Graph reductions: singletons

TTC TCA

TTCA

CAG

TCAG

AGG
CAGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA

TCG

CGA

TCAT

CATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA

TCG

CGA

TCAT

CATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA CGA

TCAT

CATCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

ATG

TGG GGA GAC

ACA CGA

TCAT

CATCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

ACA CGA

TCAT

CATCGA

CGAC

GACA

ACAT

CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

ACA CGA

TCAT

CATCGA

CGAC

GACA

ACAT

CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

CGA

TCAT

CATCGA

CGAC

GACAT
CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

CGA

TCAT

CATCGA

CGAC

GACAT
CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

TCAT

CATCGAC

GACAT
CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

TGG GGA GAC

TCAT

CATCGAC

GACAT
CATGG

TGGA GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

GGA GAC

TCAT

CATCGAC

GACAT

CATGGA

GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

GGA GAC

TCAT

CATCGAC

GACAT

CATGGA

GGAC

2a) Graph reductions: singletons

TTC TCA

TTCA TCAGG

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

2b) Graph reductions: forks

ABC

Forks are nodes with indegree = 1 and

outdegree > 1 (i.e., a node v with
exactly one incoming edge [u, v] and
outgoing edges [v, w1], [v, w2], …).*

A node with outdegree > 1 indicates

either a sequencing error or a
repetitive region. We apply a heuristic
approach to resolve this feature.

Of the outgoing edges, keep only the

one which has the most occurrences
continuing from the incoming edge. If
the number of such occurrences is

roughly equal for all edges, leave the
fork in the graph.*

Idury and Waterman formalize this heuristic as the

overlap test, but the explanation here is the rough
intuition behind its behavior.

CDE

ABCD

CDF

ABC

BCDE

BCDF

“Reverse forks” (i.e., nodes with indegree > 1 and

outdegree = 1) can also be resolved analogously.

(1, 2, 5)

(3, 3, 6)
(6, 1, 4)

(1, 3, 6)

(3, 4, 7)

2b) Graph reductions: forks

ABC

Forks are nodes with indegree = 1 and

outdegree > 1 (i.e., a node v with
exactly one incoming edge [u, v] and
outgoing edges [v, w1], [v, w2], …).*

A node with outdegree > 1 indicates

either a sequencing error or a
repetitive region. We apply a heuristic
approach to resolve this feature.

Of the outgoing edges, keep only the

one which has the most occurrences
continuing from the incoming edge. If
the number of such occurrences is

roughly equal for all edges, leave the
fork in the graph.*

Idury and Waterman formalize this heuristic as the

overlap test, but the explanation here is the rough
intuition behind its behavior.

CDE

ABCD

CDF

ABC

BCDE

BCDF

“Reverse forks” (i.e., nodes with indegree > 1 and

outdegree = 1) can also be resolved analogously.

(1, 2, 5)

(3, 3, 6)
(6, 1, 4)

(1, 3, 6)

(3, 4, 7)

2b) Graph reductions: forks

ABC

Forks are nodes with indegree = 1 and

outdegree > 1 (i.e., a node v with
exactly one incoming edge [u, v] and
outgoing edges [v, w1], [v, w2], …).*

A node with outdegree > 1 indicates

either a sequencing error or a
repetitive region. We apply a heuristic
approach to resolve this feature.

Of the outgoing edges, keep only the

one which has the most occurrences
continuing from the incoming edge. If
the number of such occurrences is

roughly equal for all edges, leave the
fork in the graph.*

Idury and Waterman formalize this heuristic as the

overlap test, but the explanation here is the rough
intuition behind its behavior.

CDE

ABCD

CDF

ABC

BCDE

(1, 2, 5)

(3, 3, 6)

(1, 3, 6)

(3, 4, 7)

“Reverse forks” (i.e., nodes with indegree > 1 and

outdegree = 1) can also be resolved analogously.

2b) Graph reductions: forks

TTC TCA

TTCA TCAGG

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

2b) Graph reductions: forks

TTC TCA

TTCA TCAGG

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

(1, 1, 4)

(2, 1, 4)

(4, 1, 4)

(2, 2, 5)

(4, 2, 5)

(1, 2, 6)

2b) Graph reductions: forks

TTC TCA

TTCA TCAGG

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

(1, 1, 4)

(2, 1, 4)

(4, 1, 4)

(2, 2, 5)

(4, 2, 5)

(1, 2, 6)

2b) Graph reductions: forks

TTC TCA

TTCA

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

(1, 1, 4)

(2, 1, 4)

(4, 1, 4)

(2, 2, 5)

(4, 2, 5)

2a) Graph reductions: singletons

TTC TCA

TTCA

AGG

CAT

GAC

TCAT

CATCGAC

GACAT

CATGGAC

2a) Graph reductions: singletons

TTC AGG

CAT

GAC

TTCAT

CATCGAC

GACAT

CATGGAC

2c) Graph reductions: crosses

CDE

Crosses are nodes with indegree > 1

and outdegree > 1 (i.e., a node v with
incoming edges [u1, v], [u2, v], … and
outgoing edges [v, w1], [v, w2], …).

We again apply a heuristic approach to

resolve this feature, which may be the
result of sequencing errors or repetitive
regions.

If there are pairs of edges which have

continuing occurrences with each
other, merge these pairs of edges.* Idury and Waterman formalize this by applying the overlap

test in both directions (i.e., merge [u1, v] and [v, w1] if [v, w1]
passes the overlap test for [u1, v] and [u1, v] passes the
overlap test for [v, w1]).

DEFACDE

DEG

ACD CDEF

CDEG

(2, 4, 7) (2, 5, 8)

(6, 2, 5)

BCD BCDE

(6, 1, 4)

2c) Graph reductions: crosses

CDE

Crosses are nodes with indegree > 1

and outdegree > 1 (i.e., a node v with
incoming edges [u1, v], [u2, v], … and
outgoing edges [v, w1], [v, w2], …).

We again apply a heuristic approach to

resolve this feature, which may be the
result of sequencing errors or repetitive
regions.

If there are pairs of edges which have

continuing occurrences with each
other, merge these pairs of edges.* Idury and Waterman formalize this by applying the overlap

test in both directions (i.e., merge [u1, v] and [v, w1] if [v, w1]
passes the overlap test for [u1, v] and [u1, v] passes the
overlap test for [v, w1]).

DEFACDE

DEG

ACD CDEF

CDEG

(2, 4, 7) (2, 5, 8)

(6, 2, 5)

BCD BCDE

(6, 1, 4)

2c) Graph reductions: crosses

CDE

Crosses are nodes with indegree > 1

and outdegree > 1 (i.e., a node v with
incoming edges [u1, v], [u2, v], … and
outgoing edges [v, w1], [v, w2], …).

We again apply a heuristic approach to

resolve this feature, which may be the
result of sequencing errors or repetitive
regions.

If there are pairs of edges which have

continuing occurrences with each
other, merge these pairs of edges.* Idury and Waterman formalize this by applying the overlap

test in both directions (i.e., merge [u1, v] and [v, w1] if [v, w1]
passes the overlap test for [u1, v] and [u1, v] passes the
overlap test for [v, w1]).

DEF
ACDEF

DEG

ACD

(2, 4, 8)

BCD
BCDEG

(6, 1, 5)

2c) Graph reductions: crosses

TTC AGG

CAT

GAC

TTCAT

CATCGAC

GACAT

CATGGAC

2c) Graph reductions: crosses

TTC AGG

CAT

GAC

TTCAT

CATCGAC

GACAT

CATGGAC

(1, 1, 4)

(2, 1, 5)

(4, 1, 5)

(5, 1, 7)

(6, 1, 5)

(7, 3, 6)

(8, 2, 7)

(3, 3, 6)

(7, 1, 5)

(8, 1, 4)

(2, 3, 6)

(3, 1, 6)

2c) Graph reductions: crosses

TTC AGG

CAT

GAC

TTCAT

CATCGAC

GACAT

CATGGAC

(1, 1, 4)

(2, 1, 5)

(4, 1, 5)

(5, 1, 7)

(6, 1, 5)

(7, 3, 6)

(8, 2, 7)

(3, 3, 6)

(7, 1, 5)

(8, 1, 4)

(2, 3, 6)

(3, 1, 6)

2c) Graph reductions: crosses

TTC AGG

CAT

GAC

TTCAT

GACATCGAC

CATGGAC

(1, 1, 4)

(2, 1, 5)

(4, 1, 5)

(3, 3, 6)

(5, 1, 7)

(6, 1, 5)

(7, 1, 6)

(8, 1, 7)

(2, 3, 6)

(3, 1, 6)

2a) Graph reductions: singletons

TTC AGG

CAT

GAC

TTCAT

GACATCGAC

CATGGAC

(1, 1, 4)

(2, 1, 5)

(4, 1, 5)

(3, 3, 6)

(5, 1, 7)

(6, 1, 5)

(7, 1, 6)

(8, 1, 7)

(2, 3, 6)

(3, 1, 6)

2a) Graph reductions: singletons

TTC AGG

GAC

TTCATGGAC

GACATCGAC
(1, 1, 4)

(2, 1, 6)

(3, 1, 6)

(4, 1, 5)

(3, 3, 6)

(5, 1, 7)

(6, 1, 5)

(7, 1, 6)

(8, 1, 7)

2) Irreducible sequence graph

TTC AGG

GAC

TTCATGGAC

GACATCGAC

The graph has now been fully

reduced, and we can search
for an Eulerian path.

You may notice that the

reductions accumulate lots of
occurrence tuples within the
graph edges. These

remaining edges are referred
to as “super edges,” and in

general, we assign more
weight (confidence) to edge
labels with more occurrences.

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

TTCATGGA

C

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

TTCATGGA

C

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

TTCATGGACATCGAC

3) Perform an Eulerian tour

TTC AGG

GAC

TTCATGGAC

GACATCGAC

We identify the start node as

having outdegree - indegree = 1
and the terminal node as having
indegree - outdegree = 1.

start

end

Beginning with the start node,

follow outgoing edges until all
edges are used once and the
terminal node is reached. Infer

the sequence by merging edge
labels along the path taken.

If there are multiple outgoing

edges to follow, choose edges
based on the continuity of
occurrences and edge weights.

TTCATGGACATCGAC

4) Align the reads to the inferred sequence

TTCATGGACATCGA

C
TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

First, we apply hashing
methods to identify where
each fragment might align
well to the sequence.

This will produce
“candidate diagonals.”

We can then perform
alignment along those
diagonals, which is more
efficient than using the
entire edit graph.

4) Align the reads to the inferred sequence

TTCATGGACATCGA

C
TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

First, we apply hashing
methods to identify where
each fragment might align
well to the sequence.

This will produce
“candidate diagonals.”

We can then perform
alignment along those
diagonals, which is more
efficient than using the
entire edit graph.

f1

f2

f4

f3

f7

f8

f5

f6

4) Align the reads to the inferred sequence

TTCATGGACATCGA

C
TTCAGG

TTCATGG

ATGGACA

TTCAT

f1
f2

f3

f4

CATCGAC

TCGAC

GACATC

ACATCGA

f5
f6
f7

f8

First, we apply hashing
methods to identify where
each fragment might align
well to the sequence.

This will produce
“candidate diagonals.”

We can then perform
alignment along those
diagonals, which is more
efficient than using the
entire edit graph.

4) Align the reads to the inferred sequence

TTCATGGACATCGA

C
TTCAGG
TTCATGG

ATGGACA
TTCAT

CATCGAC
TCGAC

GACATC
ACATCGA

Statistics of Sequence Graphs

We have seen that graph reductions greatly help to limit the size of the sequence

graph during assembly. But how many reductions can we expect to make? What

do we expect the graph structure to look like?

Define the following:

● k = tuple size, edge label length

● L = length of original sequence

● N = number of fragments (reads)

● ℓ = average fragment length

● c = mean depth of coverage

● T = N(ℓ - k + 2) = number of (k-1) regions

● r = error rate

Assume:

1. Errors are uniformly distributed over fragments

and the length of each fragment

2. Error rate r is small

3. For any position i of the original sequence, the

number of fragments covering i…(i+k-2) is a

Poisson random variable

4. There are no repeats of length at least k

5. The only sequencing errors are substitutions

Statistics of Sequence Graphs

Let L’ = L - k + 2 and R = 1 - (1 - r)(k-1)

This is the number of (k-1)-mers

in the original sequence.

This is the (k-1)-mer error rate.

Then we have the following results:

Here we will briefly outline the proof of (1):

Vertices in the sequence graph can be classified as true (if they are found in the

original sequence) or false (if they are generated from a sequencing error).

We can compute the number of expected vertices as the sum of the expected

number of true vertices and the expected number of false vertices.

If T is the number of (k-1)-mers in our read set, and R is the false (k-1)-mer rate,

then the expected number of false vertices is RT.

Statistics of Sequence Graphs: vertices

To find the expected number of true vertices, we consider that the number of true

vertices is equivalent to the number of positions such that at least one fragment

has no sequencing errors.

Recall that the depth at a particular position (number of reads covering that

position) is a Poisson variable with mean c ⇔ X ~ Poisson(c). So we have:

Statistics of Sequence Graphs: vertices

Number of (k-1)-mers in

the original sequence

Probability that at least

1 out of i reads is
correctly sequenced

Probability that i reads

cover the (k-1)-length
region

Expectation over

all possible values
for X ~ Poisson

Statistics of Sequence Graphs: vertices

pmf of Poisson:

using Taylor

expansion for e:

Summing the number of false vertices and true vertices produces:

What did we expect from our example sequence graph?

● k = 4

● L = 15

● N = 8

● ℓ = 50/8 = 6.25

● c = 50/15 = 3.33

● T = 32

● r = 1/50 = 0.02

TTCATGGACATCGA

C
TTCAGG
TTCATGG

ATGGACA
TTCAT

CATCGAC
TCGAC

GACATC
ACATCGA

What did we expect from our example sequence graph?

● k = 4

● L = 15

● N = 8

● ℓ = 50/8 = 6.25

● c = 50/15 = 3.33

● T = 32

● r = 1/50 = 0.02

E(|V|) ≈ 14.318

E(|S|) ≈ 12.869

E(|F|) ≈ 1.387

What did we expect from our example sequence graph?

E(|V|) ≈ 14.318

E(|S|) ≈ 12.869

E(|F|) ≈ 1.387

TTC TCA

TTCA

CAG

TCAG

AGG
CAGG

CAT

ATG

TGG GGA GAC

ACA

ATC TCG

CGA

TCAT

CATC ATCG

TCGA

CGAC

GACA

ACATCATG

ATGG

TGGA GGAC

|V| = 13

|S| = 8

|F| = 1

What did we expect from our example sequence graph?

E(|V|) ≈ 14.318

E(|S|) ≈ 12.869

E(|F|) ≈ 1.387

|V| = 13

|S| = 8

|F| = 1

This also predicts that we

could simplify the graph to
1-3 nodes

TTC GAC

TTCATGGAC

GACATCGAC

Practical considerations

● The Idury-Waterman algorithm pioneered the use of De Bruijn graphs in

assembly, particularly with the advent of shotgun sequencing over

sequencing by hybridization

● The technical challenges associated with repeat regions, cost limitations on

sequencing depth, and sequencing errors require heuristics to resolve
○ Idury and Waterman propose utilizing positional information, incorporating both multiplicity of

k-mers and fragment continuity as deciding factors

● The randomness of sequencing errors and sampling reads prevents concrete

upper bounds on efficiency but allow for probabilistic estimates of

computational performance

	Slide 1: Idury-Waterman Algorithm (1995)
	Slide 2: The Algorithm
	Slide 3: An example:
	Slide 4: An example:
	Slide 5: An example:
	Slide 6: An example:
	Slide 7: 1) Obtain the union of spectra for all reads
	Slide 8: 1) Obtain the union of spectra for all reads
	Slide 9: 1) Obtain the union of spectra for all reads
	Slide 10: 2) Construct the sequence graph on (k-1)-mers
	Slide 11: 2) Construct the sequence graph on (k-1)-mers
	Slide 12: 2) Construct the sequence graph on (k-1)-mers
	Slide 13: 2) Construct the sequence graph on (k-1)-mers
	Slide 14: 2) Construct the sequence graph on (k-1)-mers
	Slide 15: 2) Construct the sequence graph on (k-1)-mers
	Slide 16: 2) Construct the sequence graph on (k-1)-mers
	Slide 17: 2) Construct the sequence graph on (k-1)-mers
	Slide 18: 2) Construct the sequence graph on (k-1)-mers
	Slide 19: 2) Construct the sequence graph on (k-1)-mers
	Slide 20: 2) Construct the sequence graph on (k-1)-mers
	Slide 21: 2) Construct the sequence graph on (k-1)-mers
	Slide 22: 2) Construct the sequence graph on (k-1)-mers
	Slide 23: 2) Construct the sequence graph on (k-1)-mers
	Slide 24: 2) Construct the sequence graph on (k-1)-mers
	Slide 25: 2) Construct the sequence graph on (k-1)-mers
	Slide 26: 2) Construct the sequence graph on (k-1)-mers
	Slide 27: 2) Construct the sequence graph on (k-1)-mers
	Slide 28: 2) Construct the sequence graph on (k-1)-mers
	Slide 29: 2a) Graph reductions: singletons
	Slide 30: 2a) Graph reductions: singletons
	Slide 31: 2a) Graph reductions: singletons
	Slide 32: 2a) Graph reductions: singletons
	Slide 33: 2a) Graph reductions: singletons
	Slide 34: 2a) Graph reductions: singletons
	Slide 35: 2a) Graph reductions: singletons
	Slide 36: 2a) Graph reductions: singletons
	Slide 37: 2a) Graph reductions: singletons
	Slide 38: 2a) Graph reductions: singletons
	Slide 39: 2a) Graph reductions: singletons
	Slide 40: 2a) Graph reductions: singletons
	Slide 41: 2a) Graph reductions: singletons
	Slide 42: 2a) Graph reductions: singletons
	Slide 43: 2a) Graph reductions: singletons
	Slide 44: 2a) Graph reductions: singletons
	Slide 45: 2a) Graph reductions: singletons
	Slide 46: 2a) Graph reductions: singletons
	Slide 47: 2a) Graph reductions: singletons
	Slide 48: 2b) Graph reductions: forks
	Slide 49: 2b) Graph reductions: forks
	Slide 50: 2b) Graph reductions: forks
	Slide 51: 2b) Graph reductions: forks
	Slide 52: 2b) Graph reductions: forks
	Slide 53: 2b) Graph reductions: forks
	Slide 54: 2b) Graph reductions: forks
	Slide 55: 2a) Graph reductions: singletons
	Slide 56: 2a) Graph reductions: singletons
	Slide 57: 2c) Graph reductions: crosses
	Slide 58: 2c) Graph reductions: crosses
	Slide 59: 2c) Graph reductions: crosses
	Slide 60: 2c) Graph reductions: crosses
	Slide 61: 2c) Graph reductions: crosses
	Slide 62: 2c) Graph reductions: crosses
	Slide 63: 2c) Graph reductions: crosses
	Slide 64: 2a) Graph reductions: singletons
	Slide 65: 2a) Graph reductions: singletons
	Slide 66: 2) Irreducible sequence graph
	Slide 67: 3) Perform an Eulerian tour
	Slide 68: 3) Perform an Eulerian tour
	Slide 69: 3) Perform an Eulerian tour
	Slide 70: 3) Perform an Eulerian tour
	Slide 71: 3) Perform an Eulerian tour
	Slide 72: 3) Perform an Eulerian tour
	Slide 73: 3) Perform an Eulerian tour
	Slide 74: 4) Align the reads to the inferred sequence
	Slide 75: 4) Align the reads to the inferred sequence
	Slide 76: 4) Align the reads to the inferred sequence
	Slide 77: 4) Align the reads to the inferred sequence
	Slide 78: Statistics of Sequence Graphs
	Slide 79: Statistics of Sequence Graphs
	Slide 80: Statistics of Sequence Graphs: vertices
	Slide 81: Statistics of Sequence Graphs: vertices
	Slide 82: Statistics of Sequence Graphs: vertices
	Slide 83: What did we expect from our example sequence graph?
	Slide 84: What did we expect from our example sequence graph?
	Slide 85: What did we expect from our example sequence graph?
	Slide 86: What did we expect from our example sequence graph?
	Slide 87: Practical considerations

