<u>[CpG ISLANDS]</u>	
a in the human genome, when C and G occur consecutively (denoted CpG	i), the (nucleotide is
typically chemically modified by methylation, resulting in methy	g1-C
¹² Such methyl-C is mutated with high probability into nucleotide	- τ
CpG's are rarer in the genome than would be expected	l by chance
-Knowever, near the beginning or a gene, methylation is suppressed,	, so Cosis are enriched
compared to the rest of the genome. These regions are 100s-1000s	of basepairs long.
¹³ <u>Question</u> : Given a DNA region, him can me decide whether it is	a CpB7 island, or whether it
contains such islands?	[not (pla island]
a solution: we will combine 2 markov Models the "+" model and	the "-" model
At (t) (Gt) (Tt) need to define transition	probabilities between all state
in both "+" and	"-" models
A C C T	
Hidden states: At, Ct, Gt, Tt, AT, CT, GT, T	
(emissions) A C G T A C G T	AT CT GT T
For the "+" model: look in the color islands databooke to]	A* .10 .234 .910 .12
compart frequencies of one nucleotide	+> C ⁴ .17 .368 .274 .188
being falloved by another	6 . 16 .34 .375 .125
For the "-" model: A C G T	T* .079 .355 .385 .182
₼ .3 .21 .29 .21	
C .32 .198 .30	CG is way more propable in
6 .181 .246 .298 .108	nan "-" madel
T- 1.177 .239 .212 .212	
> defining transitions between "+" and "-" states is a little to	ickies to complete from date
to let's used assume that the probability of transitionia	netween models is only low
so is a gran assume that the propublicity of that showing	Deriver, houers to dance tows.
ex suppose he have a sequence . C G C G	P(N) P(N)>P(2)
possible stue sequences. I c a c a - 1	
- so of the o share sequences (1, 1, and 2), X is	me nost provable.