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Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)
Problem 1: The Evaluation Problem
Given: O, λ
Compute: P(O | λ) the probability of the observation
sequence given the HMM model
Problem 2: The Decoding Problem
Given: O, λ
Compute: A sequence of states Q for the observation
sequence O, Q = q1, ..., qT which optimally “explains” the
observation sequence.
Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model λ that
maximizes the probability P(O | λ) of observing O in the
model λ
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Problem 1

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 1: The Evaluation Problem
Given: O, λ
Compute: P(O | λ) the probability of the observation
sequence given the HMM model
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Problem 2

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 2: The Decoding Problem
Given: O, λ
Compute: A sequence of states Q for the observation
sequence O, Q = q1, ..., qT which optimally “explains” the
observation sequence.
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Problem 3

Observation sequence O = o1, ..., oT
and HMM model λ = (A,B, π)

Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model λ that
maximizes the probability P(O | λ) of observing O in the
model λ
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Elements of an HMM

1 N is the number of states S = {S1, ...,SN}.
The HMM process proceeds in discrete units of time,
t = 1, 2, 3, .....
The state at time t is denoted by qt .

2 M is the number of distinct observation symbols per state
V = v1, ..., vM

3 The transition probability distribution is given by A = {aij}
,where
aij = P[qt+1 = Sj | qt = Si ], 1 ≤ i , j ,≤ N

4 The observation symbols probability distribution in state j
is given by
B = {bj(k) = P[vk at time t | qt = Sj ],
1 ≤ j ≤ N, 1 ≤ k ≤ M

5 The initial state distribution is given by
πi = P[q1 = Si ], 1 ≤ i ≤ NSorin Istrail HMM: The Learning Problem
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Basic variables and probabilities

a sequence of states is Q = {q1, q2, ..., qT}
The probability of observing the sequence O in sequence
of states Q is

P(O | Q) =
T∏
i=1

P((oi | qi )

P(O | Q) = bq1(o1)...bqT (oT )

P(Q) = πq1aq1q2aq2q3 ...aqT−1qT

P(O,Q) = P(O | Q)P(Q)
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Basic variables and probabilities

the probability of observing O is

P(O) =
∑
allQ

P(O | Q)P(Q)

=
∑

q1...qT

πq1bq1(o1)aq1q2bq2(o2)...aqT−1qT bqT (oT )
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the Forward variable αt(i)

The Forward variable is defined by

αt(i) = P(o1o2...ot , qt = Si )

i.e., the probability of the prefix of the sequence of
observations o1...ot until time t and being in state Si at time t
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the Backward variable βt(i)

The Backward variable is defined by

βt(i) = P(ot+1ot+2...oT , qt = Si )

i.e., the probability of the suffix of the sequence of
observations ot+1ot=2...oT until end of sequence t and being
in state Si at time t
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the Delta variable δt(i)

The δt(i) variable is defined by

δt(i) = MAXq1...qt−1P(q1...qt−1qt , o1...ot−1ot)

i.e., the best score (highest probability) along the single path,
at time t which accounts for the first t observations and ends
in state Si
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By far the most difficult of the three problems.

We want to adjust the parameters of the model λ = (A,B, π)
to maximize the probability of observing the sequence in the
model.

There is no exact analytical solution to this problem.

Both Problem 1 and Probem 2 have solutions given by
algorithms that we presented in CS 1810. Those algorithms
are exact and having computing time O(N2T ).
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We can choose λ′ = (A′,B ′, π′) such that P(O | λ′) is locally
maximal.

We use the Baum-Welch Algorithm. This is an iterative
algorithm. We iterate untill no improvement is possible. At
that point we reached a local maxima.
For this iteration we are using a method for reesttimation of
the HMM parameters.
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the Xi variable ξ(ij)

We first define a new variable ξ

ξt(i , j) = the probability of being in state Si at time t and
state Sj at time t + 1, given the model and the observation
sequence

ξt(i , j) = P(qt = Si , qt+1 = Sj | O, λ)
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From the definition of α and β variables we can write ξ as
follows:

ξt(i , j) =
αt(i)aijbj(ot+1)βt+1(j)

P(O | λ)

=
αt(i)aijbj(ot+1)βt+1(j)∑N

i ′=1

∑N
j ′=1 αt(i ′)ai ′j ′bj ′(ot+1)βt+1(j ′)
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The numerator is:

P(qt = Si , qt+1 = Sj ,O | λ)

and the denominator is the normalization factor to give the
probability:

P(O | λ) =
N∑

i ′=1

N∑
j ′=1

αt(i
′)ai ′j ′bj ′(ot+1)β(j ′)
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the Gamma variable γt(i)

As γt(i) is the probability of being in state Si at time t given
the observation sequence and model we have

γt(i) =
N∑
j=1

ξt(i , j)
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The expected number of times state Si is visited or
equivalently the expected number of transitions made from Si
is

T−1∑
t=1

γt(i) =

= the expected number of transitions from Si

Similarly,

T−1∑
t=1

ξt(i , j) =

= the expected number of transitions from Si to Sj
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Reestimating πi

A set of resonable reestimations for the parameters π,A,B are
given as follows:

π̄ = γ1(i), 1 ≤ i ≤ N

i.e., the expected frequency (number of times) in state Si at
time (t = 1) is = γ1(i)

Sorin Istrail HMM: The Learning Problem



Outline
The Basic Three HMM Problems

HMM: basic variables and probailities
Solution to Problem 3: The Expectation-Maximization Algorithm

The Principle of Maximum- Likelihood

The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

Reestimating A = {aij}

āij =

∑T−1
t=1 ξt(i , j)∑T−1
t=1 γt(i)

i.e., (expected number of transitions from Si to Sj)/ (exected
number of transitions from Si )
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Reestimating B = bj(k)

b̄j(k) =

∑T
t=1,ot=vk

γt(j)∑T
t=1 γt(j)

i.e., (expected number of times in state Sj observing
observation symbol vk)/ (expected number of times in state
Sj)
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Let the current model λ = (A,B, π)

Compute the above reestimation to get a new model
λ̄ = (Ā, B̄, π̄)

Then
1 λ is a local optimum, i.e., λ = λ̄, or
2 λ̄ is more likely that λ in the sense that

P(O | λ̄) > P(O | λ)

, i.e., we have found a new model λ̄ from which the
observation sequence is more likely to have been produced.
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The maximum likelihood HMM estimate

If we consider this reestimation, the final result of this
reestimation procedure is called a maximum likelihood
estimate of the HMM

The Forward-Backward algorithm leads to a local maxima
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Baum’s Q-function and the Baum-Welch Theorem

The reestimation formulas can be derived directly by
maximization (using constrained optimization) of Baum’s
auxiiary function:

Maxλ̄Q(λ, λ̄) = sumQP(Q | O, λ) log(P(O,Q | λ))

Baum-Welch Theorem:

Maxλ̄(Q(λ, λ̄)

implies that

P(O | λ̄) ≥ P(O | λ)
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The EM Algorithm

The reestimation procedure can be implemented as the
Expectation-Maximization (EM) Algorithm due to
Dempster, Laird and Rubin (1977)

The E-step (Expectation) is the calculation of the Baum’s
auxiliary function Q(λ, λ̄)

The M-step (Maximization) is the maximization of λ̄
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The stochastic contraints

The stochastic contraints for the model are automatically
satisfied at each iteration:

N∑
i=1

π̄i = 1, 1 ≤ j ≤ N

N∑
i=1

āij = 1, 1 ≤ j ≤ N

M∑
k=1

b̄j(k) = 1

Sorin Istrail HMM: The Learning Problem
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Viewing the parameter optimization problem as an
optimization problem

We can solve the parameter estimation problem as a
constraint optimization problem for

P(O | λ)

under the stochastic contraints by using the Lagrangean
multipliers method. It shows that P is maximized when the
following hold:
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Lagrangean multipliers for the solution of the optimization

πi =
πi

∂P
∂πi∑N

k=1 πk
∂P
∂πk

aij =
aij

∂P
∂aij∑N

k=1 aik
∂P
∂aik

bi (k) =
bi (k) ∂P

∂bi (k)∑M
l=1 bi (l)

∂P
∂bi (l)

Sorin Istrail HMM: The Learning Problem



Outline
The Basic Three HMM Problems

HMM: basic variables and probailities
Solution to Problem 3: The Expectation-Maximization Algorithm

The Principle of Maximum- Likelihood

The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

By appropriate manipulation of those formulas the right-hand
sides of each equaltion can be ready converted to be identical
to the right-sides of the EM algorithm reestimations.

This shows that the reestimation formulas are indeed exactly
correct at local optimal points of P(O | λ)
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The Principle of Maximum- Likelihood

The general prinicple of Maximum-Likelihood

Suppose that we have c data sets D1...Dc with the sample Dj

haveing been drawn independently according to the
probability distribution p(x | wj)

We say that such sample are i.i.d.-idependent and identically
distributed random variables

we assume that p(x | wj) has a known parameter form, and
therefore determined uniquely by the value of its paramenter
vector θj

For example, we might have p(x | wj) = N(µj , σj) where θj is
the vector of all components of µj , σj .
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The Problem we want to solve

Notation

To show the dependence of of p(x | wj) on θj explicitly, we
write p(x | wj , θj)

The Problem we want to solve

Use the information provided by the training samples to obtain
good estimates for the unknown parameter vectors θ1, ..., θc

To simplify, assume that Di give no information about
θj , j 6= i . Parameters are different classes are functionally
different. And so we now have c problems of the same form.
So we will work with a generic one such data set D.

We use a set D of training samples drawn independently from
the probability distribution p(x | θ) to estimate the unknown
parameters vector θ.
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The Maximum Likelihood Estimate

Suppose D contains n samples x1, ..., xn. Because the samples
were drawn independently we have

p(D | θ) =
n∏

k=1

p(xk | θ)

p(D | θ) viewed as a function of θ is the likelihood of θ with
respect to D
The maximum-likelihood estimate of θ is, by definition, the
value θ̂ that maximizes p(D | θ)

Intuitively, this estimate corresponds to the value of θ that in
some sense best agrees with or supports the actually observed
training sample.
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Log-Likelihood maximization

For analytical reasons, it is easy to work with the logarithm of
the likelihood than with the likelihood itself, so we use the
log-likelihood objective function

Because the logarithm is monotonically increasing, the θ̂ that
maximizes the log-likelihood also maximizes the likelihood

If p(D | θ) is a differentiable function of θ, θ̂ can be found by
standard differntial calculus methods

Sorin Istrail HMM: The Learning Problem
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If θ = (θ1, ..., θr )T , let ∇θ be the gradient operator

∇θ = (
∂

∂θ1
, ...,

∂

∂θr
)T

Sorin Istrail HMM: The Learning Problem
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Define L(θ) as the log-likelihood function

L(θ) = ln p(D | θ)

and

θ̂ = arg max L(θ)

as the argument that Maximizes the log-likelihood; the
dependence on D is implicit.
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We have by the independence condition

L(θ) =
n∑

k=1

ln p(xk | θ)

and

∇θL =
n∑

k=1

ln p)xk | θ)

This the necessary conditions for the maximum-likelihood
estimate for θ can be obtained from the set of r equations

∇θL = 0

Sorin Istrail HMM: The Learning Problem
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The Expectation-Maximization (EM) Algorithm

We extend now our application of maximum likelihood to
permit learning of parameters governing a distributionfrom
training points, some of which have misiing data features.

If there is no missing data, we can use maximum likelihood,
i.e., find θ̂ that maximizes the log-likelihood L(θ).

Sorin Istrail HMM: The Learning Problem
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The basic idea of the EM algorithm is to iteratively estimate
the likelihood given the data that is present.

Consider a full sample D = {x1, ..., xn} of points taken from a
single distribution. Suppose that some features are missing:
so we can define for each sample point xk = {xkg , xkb}

i.e., contianing “good” features and the missing data as
“bad” features.
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Let us separate the features in two classes Dg and Db, where
D = Dg ∪ Db

Next we define the Baum function

Q(θ; θi ) = EDb
(ln p(Dg ,Db; θ) | Dg ; θi )

known as the Central Equation

where Q is a function of θ with the θi assumed fixed, and

EDb
is the expectation operator computing the expected value

marginalized over the missing features assuming θi are the
“true” parameters describing the full distribution
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The best intuition behind the Central Equation in the EM
algorithm is as follows:

The parameter vector θi is the current best estimate for the
full distribution

θ is a candidate vector for an improved estimate
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Given such a candidate θ, the right-had side of the central
equation calculates the likelihood of the data including the
unknown features Db marginalized with respect to the current
best distribution which is described by θi

Different such candidates will lead to different such likelihoods

Our algorithm will select the best such candidates θ and call it
θi+1, the one corresponding to the greatest value of Q(θ; θi )
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Expectation-Maximization (EM) Algorithm

BEGIN Initiatlize theta^0, epsilon, i=0

------

DO i=i+1

E step: Compute Q(theta; theta topower i)

M step: theta topower {i+1} = arg max

Q(theta, theta topower i)

UNTIL Q(theta topower {i+1}; theta topower i) -

Q((theta^i; theta topower {i-1}) <= epsilon

RETURN theta-hat = theta topower {i+1}

END

----
Sorin Istrail HMM: The Learning Problem
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The EM algorithm is most useful when the optimization of the
Q function is simpler than the likelihood L.

Most importantly, the algorithm guarantees that the
log-likelihood of the good data (with the bad data
marginalized) will increase monotonically.

This is not the same as finding the particular values of the
bad data that givess the maximum-likelihood of the full,
complete data.
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