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The Basic Three HMM Problems

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 1: The Evaluation Problem
Given: O, A
Compute: P(O | A) the probability of the observation
sequence given the HMM model

@ Problem 2: The Decoding Problem
Given: O, A
Compute: A sequence of states @ for the observation
sequence O, Q@ = g1, ..., g7 which optimally “explains” the
observation sequence.

@ Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model A that
maximizes the probability P(O | A) of observing O in the
model A



The Basic Three HMM Problems

Problem 1

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 1: The Evaluation Problem
Given: O, A
Compute: P(O | A) the probability of the observation
sequence given the HMM model
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The Basic Three HMM Problems

Problem 2

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )

@ Problem 2: The Decoding Problem
Given: O, A
Compute: A sequence of states Q for the observation
sequence O, Q@ = g1, ..., g7 which optimally “explains” the
observation sequence.
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The Basic Three HMM Problems

Problem 3

@ Observation sequence O = oy, ..., 0T
and HMM model A = (A, B, )
@ Problem 3: The Learning Problem
Given: O
Compute: the parameters of an HMM model A that

maximizes the probability P(O | A) of observing O in the
model A
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The Basic Three HMM Problems

Elements of an HMM

@ N is the number of states S = {51, ..., Sy }.
The HMM process proceeds in discrete units of time,

The state at time t is denoted by g;.

@ M is the number of distinct observation symbols per state
V = Vi,..., VM

© The transition probability distribution is given by A = {a;;}
~where
a3 =Plgr1=51q=S5],1<i,j,<N

© The observation symbols probability distribution in state j
is given by
B = {bj(k) = P[Vk at time t ‘ qr = Sj],
1<j<N,1<k<M

© The initial state distribution is given by
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HMM: basic variables and probailities

Basic variables and probabilities

e a sequence of states is Q = {q1,q2,...., 97}

@ The probability of observing the sequence O in sequence
of states Q is

T

P(O1Q)=]]P((oi | a)

i=1

]

P(O | Q) = bg,(01)...bg, (07)
]

P(Q) = Tq1dq1g29q2q3+--997_19T
]

P(0,Q) = P(O| Q)P(Q)
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HMM: basic variables and probailities

Basic variables and probabilities

@ the probability of observing O is

P(O)=)_P(O]|Q)P(Q)
allQ

= Z T g, bg,(01)ag, g, b, (02)---agr 147 bgr (0T)

q1---qT1
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HMM: basic variables and probailities

the Forward variable o (/)

@ The Forward variable is defined by

°
a(i) = P(o102...0t,q: = S;)

@ i.e., the probability of the prefix of the sequence of
observations 05...0; until time t and being in state S; at time t

Sorin Istrail HMM: The Learning Problem



HMM: basic variables and probailities

the Backward variable (3,(/)

@ The Backward variable is defined by
o
Be(i) = P(ot+10t42...0T,9r = Si)
@ i.e., the probability of the suffix of the sequence of

observations 0;410:—5...01 until end of sequence t and being
in state S; at time t
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HMM: basic variables and probailities

the Delta variable §,(1)

@ The 4:(i) variable is defined by
°
0¢(i) = MAXq,..q. 1 P(q1...9t—1G¢, 01...0¢—10¢)

@ i.e., the best score (highest probability) along the single path,
at time t which accounts for the first t observations and ends
in state S;
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timation Equations
ithm
Baum’'s Q-f ion and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The stic Contraints
Lagrangean multipliers for the solution of the max-optimization

o By far the most difficult of the three problems.

e We want to adjust the parameters of the model A = (A, B, )
to maximize the probability of observing the sequence in the
model.

@ There is no exact analytical solution to this problem.

@ Both Problem 1 and Probem 2 have solutions given by
algorithms that we presented in CS 1810. Those algorithms
are exact and having computing time O(N2T).
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ithm
on and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints

Lagrangean multipliers for the solution of the max-optimization

@ We can choose N = (A', B, 7’) such that P(O | X') is locally
maximal.
o We use the Baum-Welch Algorithm. This is an iterative

algorithm. We iterate untill no improvement is possible. At
that point we reached a local maxima.

For this iteration we are using a method for reesttimation of
the HMM parameters.
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ithm
on and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints

Lagrangean multipliers for the solution of the max-optimization

the Xi variable £(if)

@ We first define a new variable &

@ &:(i,j) = the probability of being in state S; at time t and
state S; at time t + 1, given the model and the observation
sequence

° ft(iaj) = P(Qt =5,qt41 = Sj | Oa)‘)
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imation Equations
orithm
Baum’s Q-function and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc
Lagrangean multipliers for the solution of the max-optimization

@ From the definition of o and [ variables we can write £ as
follows:

a¢(i)aijbj(or+1)Be+1(j)
P(O [ A)

at(i)ajjbj(0t41)Be+1()
Yoy SN eeli)aije b (0 1) Bea ()

&elinJ) =
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imation Equations
orithm
Baum’s Q-function and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc
Lagrangean multipliers for the solution of the max-optimization

@ The numerator is:
°

P(g: = Si,qe41 = 5, O | A)

@ and the denominator is the normalization factor to give the
probability:

N N

(O ‘ )\ Z Z@t(’ )alj’b (Ot+1)6( )

i'=1j'=1
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc ints
Lagrangean multipliers for the solution of the max-optimization

the Gamma variable ~;(/)

@ As (i) is the probability of being in state S; at time t given
the observation sequence and model we have

N

Ve(i) = Z 1)

j=t
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ithm
on and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

@ The expected number of times state S; is visited or
equivalently the expected number of transitions made from 5;

is
°

T-1

V(i) =
t=1
= the expected number of transitions from S;

e Similarly,
°

T-1
> &g =
t=1
= the expected number of transitions from S; to S;
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Reestimating 7;

@ A set of resonable reestimations for the parameters 7, A, B are
given as follows:

F=m(i),1<i<N

@ i.e., the expected frequency (number of times) in state S; at
time (t =1) is = v1(/)
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Reestimating A = {a;;}

G = Z ft(’ J)
T )

, (expected number of transitions from S; to S;)/ (exected
number of transitions from S;)

9 ie.
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc ints

Lagrangean multipliers for the solution of the max-optimization

Reestimating B = b;(k)

T .
E(k) _ Zt:l,ot:vk ’)/t(-l)
i\K) = T :
2 e=17tU)
@ i.e., (expected number of times in state S; observing

observation symbol v)/ (expected number of times in state
5;)
d
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The Reestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Cc ints
Lagrangean multipliers for the solution of the max-optimization

o Let the current model X = (A, B, )

o Compute the above reestimation to get a new model
A= (A B,T)

@ Then

(1) {\ is a local optimum, i.e., A = A, or
@ ) is more likely that A in the sense that

P(O|X) > P(O]|A)

, i.e., we have found a new model X\ from which the
observation sequence is more likely to have been produced.
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The Reestimation Equations

The EM Algorithm

Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints

Lagrangean multipliers for the solution of the max-optimization

The maximum likelihood HMM estimate

@ |f we consider this reestimation, the final result of this
reestimation procedure is called a maximum likelihood
estimate of the HMM

@ The Forward-Backward algorithm leads to a local maxima
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The Reestimation Equations

The EN orithm

Baum’'s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints

Lagrangean multipliers for the solution of the max-optimization

Baum’'s Q-function and the Baum-Welch Theorem

@ The reestimation formulas can be derived directly by
maximization (using constrained optimization) of Baum'’s
auxiiary function:

Max; Q(\, \) = sumqP(Q | O, \)log(P(O, Q | \))

@ Baum-Welch Theorem:

Maxs (Q(\, M)

implies that
P(O[X) = P(O]N)
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Baum’'s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints

Lagrangean multipliers for the solution of the max-optimization

The EM Algorithm

@ The reestimation procedure can be implemented as the
Expectation-Maximization (EM) Algorithm due to
Dempster, Laird and Rubin (1977)

o The E-step (Expectation) is the calculation of the Baum's
auxiliary function Q(\, A)

o The M-step (Maximization) is the maximization of A
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eestimation Equations
The EM Algorithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

The stochastic contraints

@ The stochastic contraints for the model are automatically
satisfied at each iteration:

o
N
Y A=1L1<j<N
i=1

(]
N
Za‘,j_1,1<J<N
i=1

o
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timation Equations
ithm
Baum’s Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

Viewing the parameter optimization problem as an
optimization problem

@ We can solve the parameter estimation problem as a
constraint optimization problem for

P(O]A)

under the stochastic contraints by using the Lagrangean
multipliers method. It shows that P is maximized when the
following hold:
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timation Equations
\thm
on and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm s traints

Lagrangean multipliers for the solution of the max-optimization

Lagrangean multipliers for the solution of the optimization

° oP
7T’(%r,
Ti= =N ap
Zk 1 kank
° oP
aijaT,,
A= SN - P
Zk 1 ’kaak
o

i1 bi(/) ag,-P/)
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ithm
on and the Baum-Welch Theorem

Solution to Problem 3: The Expectation-Maximization Algorithm The Stochastic Contraints
Lagrangean multipliers for the solution of the max-optimization

@ By appropriate manipulation of those formulas the right-hand
sides of each equaltion can be ready converted to be identical
to the right-sides of the EM algorithm reestimations.

@ This shows that the reestimation formulas are indeed exactly
correct at local optimal points of P(O | A)
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The Principle of Maximum- Likelihood

The Principle of Maximum- Likelihood

@ The general prinicple of Maximum-Likelihood

@ Suppose that we have ¢ data sets D;...D. with the sample D;
haveing been drawn independently according to the
probability distribution p(x | w;)

@ We say that such sample are i.i.d.-idependent and identically
distributed random variables

@ we assume that p(x | wj) has a known parameter form, and
therefore determined uniquely by the value of its paramenter
vector ;

@ For example, we might have p(x | wj) = N(u;j,0;) where §; is
the vector of all components of y;, 0;.
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The Principle of Maximum- Likelihood

The Problem we want to solve

o Notation

@ To show the dependence of of p(x | w;) on 6; explicitly, we
write p(x | w;, 6;)

@ The Problem we want to solve

@ Use the information provided by the training samples to obtain
good estimates for the unknown parameter vectors 64, ..., 0.

@ To simplify, assume that D; give no information about
0;,j # i. Parameters are different classes are functionally
different. And so we now have ¢ problems of the same form.
So we will work with a generic one such data set D.

@ We use a set D of training samples drawn independently from
the probability distribution p(x | 6) to estimate the unknown
parameters vector 6.
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The Principle of Maximum- Likelihood

The Maximum Likelihood Estimate

Suppose D contains n samples xi, ..., X,. Because the samples
were drawn independently we have

p(D | 6) = Hp(ka

@ p(D | 0) viewed as a function of 6 is the likelihood of 6 with
respect to D

@ The maximum-likelihood estimate of @ is, by definition, the
value 6 that maximizes p(D | 6)

@ Intuitively, this estimate corresponds to the value of 6 that in
some sense best agrees with or supports the actually observed
training sample.
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The Principle of Maximum- Likelihood

Log-Likelihood maximization

@ For analytical reasons, it is easy to work with the logarithm of
the likelihood than with the likelihood itself, so we use the
log-likelihood objective function

o Because the logarithm is monotonically increasing, the § that
maximizes the log-likelihood also maximizes the likelihood

o If p(D | 6) is a differentiable function of 6, § can be found by
standard differntial calculus methods
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The Principle of Maximum- Likelihood

o If = (01,...,0,)7, let Vy be the gradient operator
N

V@ == (8791, ceey 679,,

Sorin Istrail HMM: The Learning Problem



The Principle of Maximum- Likelihood

o Define L(6) as the log-likelihood function
L(®) = In p(D | 0)

and

0 = argmax L(6)

@ as the argument that Maximizes the log-likelihood; the
dependence on D is implicit.
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The Principle of Maximum- Likelihood

@ We have by the independence condition

L©B) = > Inp(xc | 0)
k=1

and

Vol = Inp)x | 0)
k=1

@ This the necessary conditions for the maximum-likelihood
estimate for 6 can be obtained from the set of r equations

VoL =0
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The Principle of Maximum- Likelihood

The Expectation-Maximization (EM) Algorithm

@ We extend now our application of maximum likelihood to
permit learning of parameters governing a distributionfrom
training points, some of which have misiing data features.

@ If there is no missing data, we can use maximum likelihood,
i.e., find 6 that maximizes the log-likelihood L(9).
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The Principle of Maximum- Likelihood

@ The basic idea of the EM algorithm is to iteratively estimate
the likelihood given the data that is present.

e Consider a full sample D = {xi, ..., x,} of points taken from a
single distribution. Suppose that some features are missing:
so we can define for each sample point xx = {x,, Xk, }

@ i.e., contianing “good” features and the missing data as
“bad” features.
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The Principle of Maximum- Likelihood

@ Let us separate the features in two classes Dy and Dj, where
D=DgyUD,
@ Next we define the Baum function

Q(6;0') = £, (In p(Dy, Dy; ) | Dy; 6')

@ known as the Central Equation
e where Q is a function of @ with the 6’ assumed fixed, and

e &p, is the expectation operator computing the expected value
marginalized over the missing features assuming ' are the
“true” parameters describing the full distribution
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The Principle of Maximum- Likelihood

@ The best intuition behind the Central Equation in the EM
algorithm is as follows:

@ The parameter vector 0’ is the current best estimate for the
full distribution

@ 0 is a candidate vector for an improved estimate
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The Principle of Maximum- Likelihood

@ Given such a candidate 0, the right-had side of the central
equation calculates the likelihood of the data including the
unknown features D; marginalized with respect to the current
best distribution which is described by 6’

@ Different such candidates will lead to different such likelihoods

@ Our algorithm will select the best such candidates 6 and call it
01 the one corresponding to the greatest value of Q(6;0")
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The Principle of Maximum- Likelihood

Expectation-Maximization (EM) Algorithm
BEGIN Initiatlize theta”0, epsilon, i=0

DO i=i+1
E step: Compute Q(theta; theta topower i)

M step: theta topower {i+l1} = arg max
Q(theta, theta topower i)

UNTIL Q(theta topower {i+1}; theta topower i) -
Q((theta"i; theta topower {i-1}) <= epsilon

RETURN theta-hat = theta topower {i+1}
END
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The Principle of Maximum- Likelihood

@ The EM algorithm is most useful when the optimization of the
Q function is simpler than the likelihood L.

@ Most importantly, the algorithm guarantees that the
log-likelihood of the good data (with the bad data
marginalized) will increase monotonically.

@ This is not the same as finding the particular values of the
bad data that givess the maximume-likelihood of the full,
complete data.
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