HMM: The Learning Problem

Sorin Istrail

Department of Computer Science Brown University, Providence sorin@cs.brown.edu

March 31, 2020

Outline

The Basic Three HMM Problems HMM: basic variables and probailities Solution to Problem 3: The Expectation-Maximization Algorithm The Principle of Maximum- Likelihood

Outline

Outline

- 2 The Basic Three HMM Problems
- 3 HMM: basic variables and probailities
- Solution to Problem 3: The Expectation-Maximization Algorithm
 - The Reestimation Equations
 - The EM Algorithm
 - Baum's Q-function and the Baum-Welch Theorem
 - The Stochastic Contraints
 - Lagrangean multipliers for the solution of the max-optimization
- 5 The Principle of Maximum- Likelihood

- Observation sequence $\mathcal{O} = o_1, ..., o_T$ and HMM model $\lambda = (A, B, \pi)$
- Problem 1: The Evaluation Problem

Given: \mathcal{O}, λ

Compute: $P(O \mid \lambda)$ the probability of the observation sequence given the HMM model

• Problem 2: The Decoding Problem

Given: \mathcal{O}, λ

Compute: A sequence of states Q for the observation sequence \mathcal{O} , $Q = q_1, ..., q_T$ which optimally "explains" the observation sequence.

• Problem 3: The Learning Problem

Given: O

Compute: the parameters of an HMM model λ that maximizes the probability $P(\mathcal{O} \mid \lambda)$ of observing \mathcal{O} in the model λ

- Observation sequence $\mathcal{O} = o_1, ..., o_T$ and HMM model $\lambda = (A, B, \pi)$
- Problem 1: The Evaluation Problem
 Given: O, λ
 Compute: P(O | λ) the probability of the observation sequence given the HMM model

(日)

- Observation sequence $\mathcal{O} = o_1, ..., o_T$ and HMM model $\lambda = (A, B, \pi)$
- Problem 2: The Decoding Problem

Given: \mathcal{O}, λ Compute: A sequence of states Q for the observation sequence $\mathcal{O}, Q = q_1, ..., q_T$ which optimally "explains" the observation sequence.

- Observation sequence $\mathcal{O} = o_1, ..., o_T$ and HMM model $\lambda = (A, B, \pi)$
- Problem 3: The Learning Problem

Given: \mathcal{O} Compute: the parameters of an HMM model λ that maximizes the probability $P(\mathcal{O} \mid \lambda)$ of observing \mathcal{O} in the model λ

Elements of an HMM

• *N* is the number of states $S = \{S_1, ..., S_N\}$. The HMM process proceeds in discrete units of time, t = 1, 2, 3,

The state at time t is denoted by q_t .

- ② *M* is the number of distinct **observation symbols** per state $V = v_1, ..., v_M$
- The transition probability distribution is given by $A = \{a_{ij}\}$, where

 $a_{ij} = P[q_{t+1} = S_j \mid q_t = S_i], 1 \le i, j, \le N$

The observation symbols probability distribution in state j is given by

$$B = \{b_j(k) = P[v_k \text{ at time } t \mid q_t = S_j], \\ 1 \le i \le N, 1 \le k \le M$$

S The initial state distribution is given by

۲

۲

Basic variables and probabilities

- a sequence of states is $Q = \{q_1, q_2, ..., q_T\}$
- The **probability of observing the sequence** \mathcal{O} in sequence of states Q is

$$P(\mathcal{O} \mid Q) = \prod_{i=1}^{T} P((o_i \mid q_i))$$

$$P(\mathcal{O} \mid Q) = b_{q_1}(o_1)...b_{q_T}(o_T)$$

$$P(Q) = \pi_{q1} a_{q_1 q_2} a_{q_2 q_3} \dots a_{q_{T-1} q_T}$$

$$P(\mathcal{O}, Q) = P(\mathcal{O} \mid Q)P(Q)$$

۲

۲

Basic variables and probabilities

 \bullet the probability of observing ${\cal O}$ is

$$P(\mathcal{O}) = \sum_{allQ} P(\mathcal{O} \mid Q) P(Q)$$

$$= \sum_{q_1...q_T} \pi_{q_1} b_{q_1}(o_1) a_{q_1q_2} b_{q_2}(o_2) ... a_{q_{T-1}q_T} b_{q_T}(o_T)$$

< ∃ >

the Forward variable $\alpha_t(i)$

۲

• The Forward variable is defined by

$$\alpha_t(i) = P(o_1 o_2 \dots o_t, q_t = S_i)$$

 i.e., the probability of the prefix of the sequence of observations o₁...o_t until time t and being in state S_i at time t

the Backward variable $\beta_t(i)$

• The Backward variable is defined by

۲

$$\beta_t(i) = P(o_{t+1}o_{t+2}...o_T, q_t = S_i)$$

 i.e., the probability of the suffix of the sequence of observations o_{t+1}o_{t=2}...o_T until end of sequence t and being in state S_i at time t

the Delta variable $\delta_t(i)$

- The $\delta_t(i)$ variable is defined by
- ۲

$$\delta_t(i) = MAX_{q_1...q_{t-1}} P(q_1...q_{t-1}q_t, o_1...o_{t-1}o_t)$$

• i.e., the best score (highest probability) along the single path, at time t which accounts for the first t observations and ends in state S_i

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

- By far the most difficult of the three problems.
- We want to adjust the parameters of the model λ = (A, B, π) to maximize the probability of observing the sequence in the model.
- There is no exact analytical solution to this problem.
- Both Problem 1 and Probem 2 have solutions given by algorithms that we presented in CS 1810. Those algorithms are exact and having computing time $O(N^2 T)$.

Outline	The Reestimation Equations
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	Lagrangean multipliers for the solution of the max-optimization

- We can choose $\lambda' = (A', B', \pi')$ such that $P(\mathcal{O} \mid \lambda')$ is locally maximal.
- We use the **Baum-Welch Algorithm**. This is an iterative algorithm. We iterate untill no improvement is possible. At that point we reached a local maxima.

For this iteration we are using a method for reesttimation of the HMM parameters.

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

the Xi variable $\xi(ij)$

- We first define a new variable ξ
- $\xi_t(i,j)$ = the probability of being in state S_i at time t and state S_j at time t + 1, given the model and the observation sequence

•
$$\xi_t(i,j) = P(q_t = S_i, q_{t+1} = S_j \mid \mathcal{O}, \lambda)$$

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

• From the definition of α and β variables we can write ξ as follows:

۲

۲

$$\xi_t(i,j) = \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{P(\mathcal{O} \mid \lambda)}$$
$$= \frac{\alpha_t(i)a_{ij}b_j(o_{t+1})\beta_{t+1}(j)}{\sum_{i'=1}^N \sum_{j'=1}^N \alpha_t(i')a_{i'j'}b_{j'}(o_{t+1})\beta_{t+1}(j')}$$

< ∃ >

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

• The numerator is:

۲

$$P(q_t = S_i, q_{t+1} = S_j, \mathcal{O} \mid \lambda)$$

and the denominator is the normalization factor to give the probability:

۲

$$P(\mathcal{O} \mid \lambda) = \sum_{i'=1}^{N} \sum_{j'=1}^{N} \alpha_t(i') a_{i'j'} b_{j'}(o_{t+1}) \beta(j')$$

< ∃ > <

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

the Gamma variable $\gamma_t(i)$

 As γ_t(i) is the probability of being in state S_i at time t given the observation sequence and model we have

$$\gamma_t(i) = \sum_{j=1}^N \xi_t(i,j)$$

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

• The expected number of times state S_i is visited or equivalently the expected number of transitions made from S_i is

$$\sum_{t=1}^{T-1} \gamma_t(i) =$$

= the expected number of transitions from S_i

• Similarly,

٥

۵

$$\sum_{t=1}^{T-1}\xi_t(i,j) =$$

= the expected number of transitions from S_i to S_j

Reestimating π_i

٠

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimizatior

(日)

• A set of resonable reestimations for the parameters π , A, B are given as follows:

$$\bar{\pi} = \gamma_1(i), 1 \leq i \leq N$$

 i.e., the expected frequency (number of times) in state S_i at time (t = 1) is = γ₁(i)

Reestimating $A = \{a_{ij}\}$

۲

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optim

(日)

$$\bar{a_{ij}} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$

• i.e., (expected number of transitions from S_i to S_j)/ (exected number of transitions from S_i)

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimiza

< D > < A > < B > < B >

Reestimating $B = b_j(k)$

۹

$$\bar{b}_j(k) = \frac{\sum_{t=1,o_t=v_k}^T \gamma_t(j)}{\sum_{t=1}^T \gamma_t(j)}$$

 i.e., (expected number of times in state S_j observing observation symbol v_k)/ (expected number of times in state S_j)

Outline	The Reestimation Equations
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	

- Let the current model $\lambda = (A, B, \pi)$
- Compute the above reestimation to get a new model $\bar{\lambda}=(\bar{A},\bar{B},\bar{\pi})$
- Then
 - (1) λ is a local optimum, i.e., $\lambda = \overline{\lambda}$, or
 - 2 $\bar{\lambda}$ is more likely that λ in the sense that

$$P(\mathcal{O} \mid \overline{\lambda}) > P(\mathcal{O} \mid \lambda)$$

, i.e., we have found a new model $\bar{\lambda}$ from which the observation sequence is more likely to have been produced.

The Reestimation Equations **The EM Algorithm** Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimization

The maximum likelihood HMM estimate

- If we consider this reestimation, the final result of this reestimation procedure is called a **maximum likelihood** estimate of the HMM
- The Forward-Backward algorithm leads to a local maxima

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimization

Baum's Q-function and the Baum-Welch Theorem

- The reestimation formulas can be derived directly by maximization (using constrained optimization) of Baum's auxiiary function:
- ٩

$$\mathit{Max}_{\bar{\lambda}}\mathcal{Q}(\lambda,\bar{\lambda}) = \mathit{sum}_{Q}P(Q \mid \mathcal{O},\lambda)\log(P(\mathcal{O},Q \mid \lambda))$$

• Baum-Welch Theorem:

$$Max_{\overline{\lambda}}(\mathcal{Q}(\lambda,\overline{\lambda}))$$

implies that

$$P(\mathcal{O} \mid \bar{\lambda}) \geq P(\mathcal{O} \mid \lambda)$$

 Outline
 The Reestimation Equations

 The Basic Three HMM Problems
 The EM Algorithm

 HMM: basic variables and probailities
 Solution to Problem 3: The Expectation-Maximization Algorithm

 The Principle of Maximum- Likelihood
 The Stochastic Contraints

The EM Algorithm

- The reestimation procedure can be implemented as the **Expectation-Maximization (EM) Algorithm** due to Dempster, Laird and Rubin (1977)
- The E-step (Expectation) is the calculation of the Baum's auxiliary function Q(λ, λ̄)
- The **M-step** (Maximization) is the maximization of $\bar{\lambda}$

(日)

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimizatior

< □ > < 同 > < 回 >

The stochastic contraints

۲

۵

• The stochastic contraints for the model are automatically satisfied at each iteration:

$$\sum_{i=1}^{N}ar{\pi}_i=1, 1\leq j\leq N$$
 $\sum_{i=1}^{N}ar{s}_{ij}=1, 1\leq j\leq N$ $\sum_{k=1}^{M}ar{b}_j(k)=1$

 $\overline{k=1}$

The Reestimation Equations The EM Algorithm Baum's Q-function and the Baum-Welch Theorem The Stochastic Contraints Lagrangean multipliers for the solution of the max-optimizatior

Viewing the parameter optimization problem as an optimization problem

• We can solve the parameter estimation problem as a constraint optimization problem for

$P(\mathcal{O} \mid \lambda)$

under the stochastic contraints by using the Lagrangean multipliers method. It shows that P is maximized when the following hold:

< □ > < 同 >

 Outline
 The Reestimation Equations

 The Basic Three HMM Problems
 The EM Algorithm

 HMM: basic variables and probailities
 Baum's Q-function and the Baum-Welch Theorem

 Solution to Problem 3: The Expectation-Maximization Algorithm
 The Stochastic Contraints

 The Principle of Maximum- Likelihood
 Lagrangean multipliers for the solution of the max-optimization

Lagrangean multipliers for the solution of the optimization

۲

٠

 $\pi_i = \frac{\pi_i \frac{\partial P}{\partial \pi_i}}{\sum_{k=1}^N \pi_k \frac{\partial P}{\partial \pi_k}}$

$$a_{ij} = rac{a_{ij}rac{\partial P}{\partial a_{ij}}}{\sum_{k=1}^{N}a_{ik}rac{\partial P}{\partial a_{ik}}}$$

$$b_i(k) = \frac{b_i(k)\frac{\partial P}{\partial b_i(k)}}{\sum_{l=1}^M b_i(l)\frac{\partial P}{\partial b_i(l)}}$$

(日)

Outline	
The Basic Three HMM Problems	The EM Algorithm
HMM: basic variables and probailities	Baum's Q-function and the Baum-Welch Theorem
Solution to Problem 3: The Expectation-Maximization Algorithm	The Stochastic Contraints
The Principle of Maximum- Likelihood	Lagrangean multipliers for the solution of the max-optimization

- By appropriate manipulation of those formulas the right-hand sides of each equaltion can be ready converted to be identical to the right-sides of the EM algorithm reestimations.
- This shows that the reestimation formulas are indeed exactly correct at local optimal points of P(O | λ)

The Principle of Maximum- Likelihood

- The general prinicple of Maximum-Likelihood
- Suppose that we have c data sets D₁...D_c with the sample D_j haveing been drawn independently according to the probability distribution p(x | w_j)
- We say that such sample are i.i.d.-idependent and identically distributed random variables
- we assume that p(x | w_j) has a known parameter form, and therefore determined uniquely by the value of its paramenter vector θ_j
- For example, we might have $p(x | w_j) = N(\mu_j, \sigma_j)$ where θ_j is the vector of all components of μ_j, σ_j .

< ロ > < 同 > < 三 > < 三 >

The Problem we want to solve

Notation

To show the dependence of of p(x | w_j) on θ_j explicitly, we write p(x | w_j, θ_j)

• The Problem we want to solve

- Use the information provided by the training samples to obtain good estimates for the unknown parameter vectors $\theta_1, ..., \theta_c$
- To simplify, assume that D_i give no information about θ_j, j ≠ i. Parameters are different classes are functionally different. And so we now have c problems of the same form. So we will work with a generic one such data set D.
- We use a set D of training samples drawn independently from the probability distribution p(x | θ) to estimate the unknown parameters vector θ.

۲

The Maximum Likelihood Estimate

• Suppose \mathcal{D} contains *n* samples $x_1, ..., x_n$. Because the samples were drawn independently we have

$$p(\mathcal{D} \mid \theta) = \prod_{k=1}^{n} p(x_k \mid \theta)$$

- $p(\mathcal{D} \mid \theta)$ viewed as a function of θ is the likelihood of θ with respect to \mathcal{D}
- The maximum-likelihood estimate of θ is, by definition, the value $\hat{\theta}$ that maximizes $p(\mathcal{D} \mid \theta)$
- Intuitively, this estimate corresponds to the value of θ that in some sense best agrees with or supports the actually observed training sample.

< ロ > < 同 > < 三 > < 三 >

Log-Likelihood maximization

- For analytical reasons, it is easy to work with the logarithm of the likelihood than with the likelihood itself, so we use the log-likelihood objective function
- Because the logarithm is monotonically increasing, the $\hat{\theta}$ that maximizes the log-likelihood also maximizes the likelihood
- If $p(\mathcal{D} \mid \theta)$ is a differentiable function of θ , $\hat{\theta}$ can be found by standard differntial calculus methods

(日)

• If
$$heta=(heta_1,..., heta_r)^{ op}$$
, let $abla_ heta$ be the gradient operator

$$\nabla_{\theta} = \left(\frac{\partial}{\partial \theta_1}, ..., \frac{\partial}{\partial \theta_r}\right)^{T}$$

Sorin Istrail HMM: The Learning Problem

< ロ > < 部 > < き > < き >

æ

• Define $L(\theta)$ as the log-likelihood function

$$L(heta) = \ln p(\mathcal{D} \mid heta)$$

and

$$\hat{ heta} = rg \max L(heta)$$

• as the argument that Maximizes the log-likelihood; the dependence on \mathcal{D} is implicit.

(日)

• We have by the independence condition

$$L(\theta) = \sum_{k=1}^{n} \ln p(x_k \mid \theta)$$

and

•

$$\nabla_{\theta} L = \sum_{k=1}^{n} \ln p (x_k \mid \theta)$$

 This the necessary conditions for the maximum-likelihood estimate for θ can be obtained from the set of r equations

$$\nabla_{\theta} L = 0$$

4 3 b

The Expectation-Maximization (EM) Algorithm

- We extend now our application of maximum likelihood to permit **learning of parameters** governing a distributionfrom training points, some of which have **misiing data** features.
- If there is no missing data, we can use maximum likelihood, i.e., find $\hat{\theta}$ that maximizes the log-likelihood $L(\theta)$.

- The basic idea of the EM algorithm is to iteratively estimate the likelihood given the data that is present.
- Consider a full sample D = {x₁, ..., x_n} of points taken from a single distribution. Suppose that some features are missing: so we can define for each sample point x_k = {x_{k_g}, x<sub>k_b}
 </sub>
- i.e., contianing **"good"** features and the missing data as **"bad"** features.

- Let us separate the features in two classes \mathcal{D}_g and $\mathcal{D}_b,$ where $\mathcal{D}=\mathcal{D}_g\cup\mathcal{D}_b$
- Next we define the Baum function

$$\mathcal{Q}(\theta; \theta^i) = \mathcal{E}_{\mathcal{D}_b}(\ln p(\mathcal{D}_g, \mathcal{D}_b; \theta) \mid \mathcal{D}_g; \theta^i)$$

- known as the Central Equation
- where \mathcal{Q} is a function of θ with the θ^i assumed fixed, and
- *E*_{Db} is the expectation operator computing the expected value marginalized over the missing features assuming *θⁱ* are the "true" parameters describing the full distribution

- The **best intuition** behind the Central Equation in the EM algorithm is as follows:
- The parameter vector $\boldsymbol{\theta}^i$ is the current best estimate for the full distribution
- $\bullet \ \theta$ is a candidate vector for an improved estimate

- Given such a candidate θ , the right-had side of the central equation calculates the likelihood of the data including the unknown features \mathcal{D}_b marginalized with respect to the current best distribution which is described by θ^i
- Different such candidates will lead to different such likelihoods

• Our algorithm will select the best such candidates θ and call it θ^{i+1} , the one corresponding to the greatest value of $\mathcal{Q}(\theta; \theta^i)$

< 口 > < 何 >

> Expectation-Maximization (EM) Algorithm BEGIN Initiatlize theta⁰, epsilon, i=0 DO i=i+1 E step: Compute Q(theta; theta topower i) M step: theta topower {i+1} = arg max Q(theta, theta topower i) UNTIL Q(theta topower {i+1}; theta topower i) -

Q((theta^i; theta topower {i-1}) <= epsilon

イロト イポト イラト イラト

RETURN theta-hat = theta topower {i+1}

- The EM algorithm is most useful when the optimization of the Q function is simpler than the likelihood *L*.
- Most importantly, the algorithm guarantees that the log-likelihood of the good data (with the bad data marginalized) will increase monotonically.
- This is not the same as finding the particular values of the bad data that givess the maximum-likelihood of the full, complete data.