The	SMITH-WATERMAN ALGO	RITHM (for Local Alignment)	input: 2 sequences X and Y over some	
V(1,0)=0, Vi, 0≤i≤m			alphabet Z and scoring scheme S	
\ \	1(0,j)=0, 4j, 0=j=	n	find : 2 subsequences a and B of	
1	For i>O and j>O:	X and Y whose optimal global		
V(i,j) = max 2 0,			alignment is MAXIMAL over all	
	VLi	$-1,3) + S(x_{i},-)$	pairs of subsequences from X and Y	
	۷(i	(1) + S(-1)		
M	v (i	$(1, j-1) + S(2i, y_j) $		
The	score of the optimal	local alignment = value in	metrix. V that is maximal	
example: A C T C C A				
X	= ALACT C		max local alignment:	
	{= ALTCLA	A 0 1 0 0 0 0 1	ACTC score: 4	
5	identity:+1	c 0 0 2 0 1 1 0	À Ċ Ť Ċ	
	mismatch: -1	A 0 1,0 1,0 0 2	(start backtrack @ V*, stop when	
	indel: -2	C 0 0 2 0 2 1 0	(each a zero)	
		T0003110		
		C 0 0 1 1 4 2 0	a can think of 0's as restorts	
INTRO TO GRP ALIGNMENT				
ACG GGGGZ biologists tend to preter larger gaps as opposed to lots of				
ATGAATGGGJ lime gaps				
^o A little bit of biological context:				
	^a DNA is transcribed into RNA, which is translated into proteins			
are removed before translation				
⁰ SO, if you have CDNA (syntructic DNA transcribed from a RNA) and you want to align				
it with the genome, you want to use an alignment algorithm that is tolerant				
of long gaps to account for the RNA's missing introns				
"How do we favor longer gaps algorithmically?				
Aftine Grap Alignment has 2 parameters for gap penaltics:				
d penalty for opening a gap: d] a>t				
e penalty for continuing a gap: t)				
d how do we score a gap cluster of size n?				
□ logarithmic in n? Quadratic in n?				
Lo most useful = linear in n :				
	score of grp cluster = Q + n(T)			