

CSCI1810 and CSCI2810
Computational Molecular Biology Fall 2025

Professor Sorin Istrail
Department of Computer Science, Brown University

•​ Tues./Thurs. 2:30-3:50, CIT 241

•​ Course websites:

https://brown-cs181.github.io

–​ Make sure to join the course Gradescope! Gradescope available through Canvas or use the entry

code: 6KYP42

•​ Questions?

–​ cs181tas@cs.brown.edu
–​ EdStem

•​ TAs

–​ Sissy Han, Head Undergraduate TA

–​ Khoi Le, Undergraduate TA

–​ Ashely Xu, Undergraduate TA

https://brown-cs181.github.io
mailto:cs181tas@cs.brown.edu

1​ Course Description

The aim of this course is to provide an introduction to Computational Molecular Biology. The course
is organized into five chapters: Sequence Alignment, Combinatorial Pattern Matching, Phylogenetic
Trees, Hidden Markov Models, and Genome Assembly. Each chapter is devoted to a class of basic
computational problems related to the analysis of DNA, RNA and protein sequences and their
molecular biology function. Our journey in each chapter is driven by a set of beautiful algorithms.
“Beautiful” algorithm here refers to an algorithm that is Rigorous, Practical and with elegant Simplicity
that makes it also easy to implement and understand its correctness. These algorithms are among
those presenting the state of the art of the theory and practice of solving the computational problems
presented in the corresponding chapter. In addition to the beautiful algorithms, each chapter contains
a Foundations section that presents in detail the bio- logical problems discussed and theoretical
computer science and statistical results that led to the invention of the algorithms that resolve the
modeled biological problems. The algorithms are presented together with their underlying data
structures, mathematical analysis of their performance, and at times, the exciting story of the
researchers quest for algorithm optimality (speed). The overall work in the class will help in providing
a serious introduction to the field for both potential concentrators and those who may take only a
single course.

Prerequisites. One of: CSCI 160, 180, 190 or 200. Recommended: CS22, or some other course

that introduces concepts from discrete math and probability. Course overrides are available at the
instructor’s discretion.

2​ Course Format

Meeting times and place:
CS181 lectures are during

Tuesday and Thursday, 2:30-3:50pm, in the CIT 241.

 You are expected to attend all classes. Class lecture notes will be made available.

Homeworks will be given weekly. Overall, there will be four programming assignments.

Biological, life sciences and medical students are strongly encouraged to come to office hours and read all
programming primers in the resources section of the course website.

Grading

•​ Class participation 5%

•​ Homework 60% - the programming assignments will count for 30%

•​ Midterm exam 20% (in class)

•​ Final exam 15% (in class)

•​ For students registered for 2810, the final grade will be ½ ✕ (1810 grade + professor grade of
the final project)

​ Grades are determined by the overall performance according to these measures. You are not
competing with your classmates. The professor, at the end of the class, awards a Pastiche Pie slice award to
the student (s) with the overall most impressive performance in the class, especially in solving the extra
credit problems of the homework, as judged by the teaching team – the TAs and the professor.

Readings: There is no textbook for this class. Lecture notes of the lectures will be provided. On
the class website there are comments about good textbooks for the area and their specialized focus.
There will be required readings as well as suggested ”seminal readings” that would complement and
enhance the lecture content of the class.

CSCI2810 graduate credit: Students interested in graduate credit for this class should register

for CSCI2810. Graduate students, as well as undergraduate students, could register for the graduate
class. Credit for 2810 can be obtained by first completing the 1810 credit work, and then in addition,
by work on a final project selected in consultation with the professor. The final projects aim to
advance the research agenda of the graduate students in the class. Undergraduate students could
register if they would like an extra project with work at the level of a graduate student. The final
project themes are selected in close consultation with the professor. The themes of the final projects
need to be advanced problems with bridges to the class chapter topics. The projects will be based on
three solid research papers on the advanced problem under study.

Deliveries:

1.​ implementation code of a beautiful algorithm in the project area

2.​ a short paper describing the software implementation and computational work

3.​ one ”perfect”-powerpoint presentation to the professor of the beautiful algorithm

4.​ one powerpoint presentation of the overall project to the class in the final projects presentation
day

Typically, the students find that CS181 requires about 10 hours of coursework a week. Overall, as
Brown University requires for a full credit course, a student taking this class would spend a total of
180 hours for the entire coursework.

3​ Collaboration Policy and Grading

CS181 has a Collaboration Policy based on Brown’s Academic Code of Conduct, but is specific to
CS181. A copy of this policy is available on the course website. Overall, while students may discuss
concepts in the context of the lecture material, any collaboration on any stage of a project or
assignments (problem solving, designing, debugging or programming) is a violation of our policy. You
will learn, early in the course, sequence alignment algorithms similar to some plagiarism detection
tools.

Like many courses in the Computer Science department, CS181 relies heavily on the role of the
Undergraduate Teaching Assistants and Graduate Teaching Assistants. In addition to holding TA
hours, the CS181 Undergraduate and Graduate TAs also grade all student work under the supervision
of the Head TA, Graduate TA, and the professor; the final grades are determined by the professor.
The course staff takes violations of the collaboration policy very seriously and will prosecute them
with the standing committee on the academic code as necessary.

We will not tolerate any use of AI tools such as GPT, Claude, or Gemini unless explicitly authorized.
Students who are determined to have used AI with reasonable evidence on their assignments will not
be given any credit for the questions in concern. If a student repeatedly violates this policy, the
student will be referred to a dean at the professor’s discretion.

4​ Lecture Topics

1.​ Chapter 1: Sequence Alignment
Algorithms:

•​ Needleman-Wunsch Algorithm (global alignment)
•​ Smith-Waterman Algorithm (local alignment)

Foundations: Margaret Dayhoff the ”mother and father of Bioinformatics” – pioneer of statistical
methods, similarity matrices statistics (intro); dynamic pro- gramming; protein structure
alignment as gold standard for sequence alignment; k-mers and Poisson statistics; DNA, RNA
and protein sequence alignment; gaps in alignment; multiple alignment. Open problems.

2.​Chapter 2: Combinatorial Pattern Matching
Algorithms:

•​ Knuth-Morris-Pratt Algorithm (finding a string pattern in a text)
•​ Aho-Corasick Algorithm (generalized KMP)
•​ BLAST Algorithm (intro)
•​ Weiner Algorithm (intro) (Position Trees and Suffix Trees)

Foundations: Eric Davidson – master of the universe of the developmental gene regulatory
networks, sea urchin, and ”the regulatory genome and the computer”; transcription factors and
their DNA binding sites motifs; the transcriptome of the sea urchin embryo; finite-automata
and regular expressions; approximate string matching; patterns in DNA, RNA and protein
sequences. Open problems.

3.​Chapter 3: Phylogenetic Trees
Algorithms:

•​ UPGMA Algorithm (evolutionary distance matrices with uniform clock)
•​ Neighbor-Joining Algorithm (general evolutionary distance matrices)
•​ Parsimony Algorithm (minimizing the number of mutations)

Foundations: Ronald Fisher – pioneer of mathematical models of evolution, ”Nothing in Biology
Makes Sense Except in the Light of Evolution,” (Theodo- sius Dobzhansky, 1973); tree (multiple)
alignment, maximum likelihood phylogeny and other probabilistic models. Open problems.

4.​Chapter 4: Hidden Markov Models (HMMs)
Algorithms:

•​ Forward Algorithm for PB 1. “Computing the probability” (model scoring)
•​ Viterbi Algorithm for PB 2. “Best Explanation” (Viterbi maximum likelihood)

Foundations: Andrew Viterbi – pioneer of coding and decoding theory algo- rithms;
probabilistic finite automata; finding genes in genomes (intro); PB. 3 ”Learning (intro)” Open
problems.

5.​Chapter 5: Genome Assembly (Intro)
Algorithms:

•​ De Brujin Assembly Algorithm (de Brujin graphs and Eulerian paths)
•​ Idury-Waterman Assembly Algorithm (intro) (Poisson statistics of DNA k-mers)

Foundations: Frederick Sanger – inventor of DNA sequencing and protein sequencing
technologies (two Nobels); The Sequence of the Human Genome; aligning genome assembly
to genome assembly; statistical error models; Waterman et al. sequencing statistics (intro).
Open problems.

6.​Chapter 6: Genomic Privacy (Intro)

Finally ... Please come often to both the professor’s office hours as well as to the TAs office hours.

	CSCI1810 and CSCI2810
	Computational Molecular Biology Fall 2025
	1​Course Description
	2​Course Format
	Meeting times and place:
	Grading

	3​Collaboration Policy and Grading
	4​Lecture Topics

